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Abstract. The problem of developing theoretical methods for studying the energy distribution 

of localized photo-carriers in refractory materials in order to calculate photoconductivity and 

photoluminescence spectra is actual. А2B6 semiconductor compounds and their solid 

solutions, due to their optical, photoluminescent and photosensitive properties, are promising 

materials for science and technology, are widely used in optoelectronic technology as 

fluorescent screens, scintillation sensors, photodetectors, laser structural elements. These 

straight-band semiconductors, having high radiation efficiency, cover the entire spectrum range 

from the ultraviolet to the IR region [1]. In the constructed model, the function p(ɛ) determining 

the luminescence spectrum of a solid solution and the energy density of the generation rate 

G(ɛ) for different exciton lifetimes are calculated. For a more detailed comparison of theoretical 

calculations with experimental data [4,7], the density function of states was replaced by a three-

parameter function that significantly affects the change in the half-width and the position of 

the maximum of the exciton luminescence spectrum, which is confirmed by the results of 

numerical calculations. 
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1. Introduction 

Structures based on А2B6 semiconductors are promising materials for use in various 

optoelectronic devices. The wide use of А2B6 compounds is due to both the high efficiency of 

optical processes in these materials and the large range of variation of their properties. Spectral 

capabilities, high probability of radiative transitions and relatively good mobility of current 

carriers of wide-bandgap А2B6 semiconductors were the basis for further practical application 

of these compounds. Compounds based on А2B6 semiconductors are traditional luminescent 

materials with a wide forbidden band. The widths of the forbidden band of solid solutions 

correspond to the full spectrum of visible light and partially to the ultraviolet spectrum. This 

fundamentally allows their use as the basis of semiconductor sources and receivers of visible 

and ultraviolet light [1, 2]. In this connection, the problem of developing theoretical methods 

for studying the energy distribution of localised photoelectrons and photoholes in non-porous 

materials in order to calculate photoconductivity and photoluminescence spectra is currently 

urgent. 

2. Methods.  

In the proposed model a quantitative theory of low-temperature photoluminescence 

caused by radiative recombination of localised excitons in semiconductor solid solutions (and 

possibly in amorphous semiconductors) is constructed. In constructing the theory, the tunnel 

energy relaxation of excitons on localised states in the model of a deeply localised hole is taken 

into account and the exciton photoluminescence spectrum is calculated.  

Solid solutions represent a special class of disordered solids in which the crystalline 

long-range order in the arrangement of the nodes of the spatial lattice is preserved, and the 
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disorder is due to the random arrangement of substituent atoms at the nodes of at least one of 

the sublattices. As in the case of amorphous or glassy compounds, the presence of disorder in 

a semiconductor solid solution leads to the appearance of localised states for electrons and 

holes in the forbidden band. These states are intrinsic, they arise due to the fluctuation deviation 

of the solid solution composition in this region of space from the average. In this work [6], in 

the analysis of photoluminescence spectra of CdS1-ХSeХ solid solutions, a model of exciton 

localisation is proposed, according to which an exciton is a hole strongly localised on 

composition fluctuations and bound an electron by its Coulomb field. The inequality ɑ<<ɑB 

where ɑ is the radius of localisation of the hole, serves as a criterion for the applicability of this 

model. It has been confirmed in experiments on selective resonant excitation of localised 

exciton states and in the study of their hidden anisotropy in CdS1-ХSeХ and also used for the 

analysis of experimental data [6]. In the present work, the theory of tunnel energy relaxation 

of excitons on localised states in the model of a deeply localised hole is constructed and the 

exciton photoluminescence spectrum is calculated; the dependence of the position of the 

maximum of the luminescence band and its half-width on the choice of the exciton lifetime is 

theoretically investigated. 

A computer model of low-temperature energy relaxation of excitons to localised states (in 

the forbidden band) for the case of a strongly localised hole, when the hole, moving from one 

localisation centre to another, "pulls" the electron associated with it is build. In the considered 

model, the excitation energy of a localised exciton is determined by the following expression   

                                            Е = Е0 - ɛ - ɛВ                                                        (1) 

where Е0 is the width of the forbidden band (mobility gap), ɛ is the binding energy of the 

hole at the localisation centre, counted from the hole mobility boundary, ɛB = е2/(2æɑB) is the 

Bohr binding energy of the electron on the hole, æ is the static dielectric permittivity. Since at 

ɑ<<ɑB the dependence of ɛB (and ɑB) on ɛ can be neglected, the photoluminescence spectrum 

I(hw) is determined by the energy function of the hole distribution p(ɛ) and has the following 

form: 

I(hw) = p(Е0- hw - ɛВ)                                              (2) 

The distribution p(ɛ) is formed by the competition of two processes, namely the radiative 

recombination of the exciton, characterised by the lifetime τ0, and the tunnelling relaxation of 

the hole along the tail of the density of states. The tunnelling jump time td(r) depends 

exponentially on the distance r between the localisation centres 

td(r) = w0
-1exp(2r/ɑ)                                                (3) 

where the value of ɑ is close to the hole localisation radius taking into account the inequality 

ɑ<<ɑB , and for w0 we take into account w0 ~ 1013с-1. 

At low temperature, it is sufficient to consider only the hole transitions ɛ =>> ɛ' to deeper 

states (ɛ' > ɛ). The values τ0, w0 and ɑ are considered as parameters of the theory and their 

possible dependence on ɛ is neglected. Regarding the energy density of localised hole states 

g(ɛ), it is assumed that it decreases sufficiently rapidly to the depth of the forbidden bond, i.e. 

with increasing ɛ. In specific calculations and evaluations, we will approximate g(ɛ) by the 

exponent  

g(ɛ) = g0exp(- ɛ / ɛ0)                                               (4) 

thus introducing two more parameters g0 and ɛ0 into the theory. To find the distribution 

function p(ɛ), we use the model developed in [3] to describe interpair recombination in 

amorphous semiconductors, modifying this theory with respect to localised excitons. 
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Similar problems have been solved in a number of papers and the closest to the model under 

consideration is [5], but it considers only the kinetics of photoluminescence at small times and 

takes into account only the first jump in the energy relaxation process, whereas the proposed 

model studies the energy distribution of localised excitons under steady-state illumination 

conditions. 

Turning to a more rigorous theory, we note that the state of a localised exciton is 

characterised by the hole binding energy ɛ and the distance r to the nearest unfilled state with 

a higher binding energy ɛ'> ɛ. The population degree f of the state (ɛ, r) satisfies the kinetics 

equation 
f(ε,r)

τ(r)
= Г(ε)[1 − f(ε, r)]                                  (5) 

or                                                   

f(ε, r) =
Г(ε)τ(r)

1 +  Г(ε)τ(r)
 

Here the lifetime τ(r) is defined from the expression  

                                                 τ(r) =
τ0τ𝑑(r)

τ0+ τ𝑑(r)
                                                (6) 

and the function Г(ɛ) is represented as  

                                                          Г(ε) =
G(ε)

g(ε)−p(ε)
                                      (7) 

where G(ɛ)dɛ is the rate of arrival to states (ɛ, ɛ+dɛ) from delocalised states or from states 

with lower binding energy. The energy distribution function of holes, which determines the 

shape and position of the photoluminescence maximum, is related to f(ɛ,r) by the integral 

relation  

                                 p(ε) = g(ε) ∫ f(ε, r)4πr2ρ(ε)e−V(r)ρ(ε)dr
∞

0
                  (8) 

where V(r) = 4πr2/3 а 𝜌(𝜀) is defined as follows  

                                 𝜌(𝜀) = ∫ [g(ε′) − p(ε′)]dɛ′
∞

𝜀
                                         (9) 

The probabilities ωпр(ɛ) and ωрек(ɛ) that the exciton in the state ɛ, will respectively make a 

tunnelling jump or recombine radiatively are determined. The fulfilment of the condition  

                                        ωпр(ɛ) + ωрек(ɛ) = 1                                                 (10)  

can be used to determine the accuracy of numerical calculations. From expressions (5) and 

(7) we have 

                 𝜔пр(ε) = ∫
f(ε,r)

𝜏𝑑(r)G(ε)
g(ε)4πr2ρ(ε)e−V(r)ρ(ε)dr

∞

0
                          (11) 

The energy generation rate G(ɛ), the distribution function p(ε) and the probability ωпр(ɛ) are 

related by an additional integral relation  

                𝐺(ε) = [g(ε) − p(ε)]
𝐼

𝜌(0)
𝑒

∫ dɛ′ωпр(ɛ′)
g(𝜀′)−p(ɛ′)

𝜌(𝜀′)

ɛ
0                               (12) 

Equations (5) to (9) form a closed system of integral equations, which were solved 

numerically by iteration for certain values of parameters τ0, w0, ɑ, g0, ɛ0 and variable I. 

3. Results and Discussions 

The shape of the long-wavelength wing of exciton absorption of the studied samples is 

exponential, the value of ɛ0 was determined from the transmission spectrum and this value was 

used in the calculation as a parameter characterising the decay of the density of localised 

exciton states [4]. Photoluminescence in A2B6 structures, in the considered model, is 

determined by recombination of excitons localised on fluctuations of composition, which is 
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accounted for by the exciton lifetime τ0. Fig. 1 shows the values of the function p(ɛ), which 

determines the luminescence spectrum of one of the CdS1-ХSeХ solid solution compositions, 

for the values of the parameter τ0:= 0.1·10-8s, 0.3·10-8s, 0.6·10-8s, curves 1, 2, and 3, 

respectively. The parameters w0=1013s-1, ɑ=7Å, g0=41,82·1021sm-3эВ-1, ɛ0= 0.0055eV and 

variable I=1023sm-3s-1 were used in the numerical calculations [4]. The perpendicular arrows in 

Fig. 1 denote the position of the maximum 4·ɛ0, 4,4·ɛ0 и 4,55·ɛ0 of the p(ɛ) function defining 

the luminescence spectrum of the CdS1-ХSeХ solid solution calculated for the exciton lifetime 

values τ0 := 0.1·10-8s, 0.3·10-8s и 0.6·10-8s, curves 1, 2 and 3, respectively. 

                    
Fig. 1. Values of the function p(ɛ), which determines the luminescence spectrum of the CdS1-

ХSeХ solid solution composition, for the values of the parameter τ0:= 0.1·10-8s, 0.3·10-8s, 

0.6·10-8s, curves 1, 2, and 3, respectively. 

The constructed theoretical model naturally explains the behaviour of the luminescence 

spectrum with increasing exciton lifetime τ0 (Fig. 1), the increase of which leads to a linear 

increase in the total concentration of excitons, the energy dependence of which is defined by 

the function p(ɛ). As was expect at longer lifetime of excitons τ0 they have time to relax by 

tunnelling jumps to deeper energy states and the maximum of the distribution is shifted towards 

larger ɛ. In Fig. 1, the position of the maximum of curve 2 (vertical arrows) is shifted relative 

to curve 1 by the value of 0.4·ɛ0 and the position of the maximum of curve 3 relative to curve 

2 is shifted by the value of 0.15·ɛ0. The accuracy of numerical calculations in the constructed 

model can be estimated using the equality  

                                         ∫ [1 −  𝜔пр(ε)] ∙  G(ε)dε =  I
∞

0
                               (13) 

where G(ɛ) is the rate of exciton generation into states with binding energy ɛ, determined from 

expression (12). The excitation intensity of exciton states I for all cases of numerical 

calculation was equal to I=1023sm-3s-1. 



 

Western European Journal of Modern Experiments 

and Scientific Methods 
Volume 2, Issue 7, July, 2024 

https://westerneuropeanstudies.com/index.php/1 

ISSN (E): 2942-1896                                                               Open Access| Peer Reviewed          

 This article/work is licensed under CC Attribution-Non-Commercial 4.0 

 

45 | P a g e  

 

                       
Fig. 2. Exciton generation rate G(ɛ) into states with binding energy ɛ calculated for different 

exciton lifetimes τ0:= 0.1·10-8s, 0.3·10-8s and 0.6·10-8s, curves 1, 2, and 3, respectively. 

Fig. 2 shows the energy density of the generation rate G(ɛ) calculated for different 

exciton lifetimes τ0 := 0.1·10-8s, 0.3·10-8s and 0.6·10-8s, curves 1, 2, and 3, respectively. The 

perpendicular arrow marks the position of the 4.4·ɛ0 maximum of the p(ɛ) function, which 

defines the luminescence spectrum of the CdS1-ХSeХ solid solution, for the parameter value τ0 

:= 0.3·10-8s, curve 2, respectively in Fig. 1. Fig. 2 shows the coincidence of the initial exciton 

generation values near the mobility edge, which is a consequence of the equality of the 

parameter I=1023sm-3s-1 to the photoexcitation intensity. The splitting of G(ɛ) functions is 

observed at ɛ ~ ɛ ~ ɛmax, where ɛmax is the position of the maximum of the exciton 

photoluminescence spectrum, in Fig. 2 ɛmax is indicated by a vertical arrow, excitons through 

tunnel jumps go to deeper energy states and the values of G(ɛ) function corresponding to the 

maximum of the distribution function p(ɛ) increase and are shifted towards larger ɛ. The 

influence of the nature of the dependence of the density of states g(ɛ) on the photoluminescence 

band shape is illustrated in Fig. 3. 
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Fig. 3. Values of the function p(ɛ) determining the luminescence spectrum of the CdS1-ХSeХ 

solid solution for values of the parameter λ := 0.0, 0.025 and 0.05, curves 1, 2 and 3, 

respectively. 

The three-parameter function presented below was used as g(ɛ) in the calculation of the 

curves  

                                       g(ε) = g0exp [− (
𝜀0

𝜀
+ √

𝜀1

𝜀
)

−1

]                               (14)  

where ɛ1 = λ·ɛ0, λ is a dimensionless quantity and determines the magnitude and shape of 

the density of exciton states [4,7]. The energy dependence of the density of states p(ɛ) 

calculated by formula (14) for three different values of λ=ɛ1/ɛ0 is shown in Fig.-3. It can be 

seen that with increasing λ the maximum of exciton distribution shifts towards larger values of 

ɛ (i.e., to the long-wave region of the spectrum), since the decline of the density of states into 

the depth of the forbidden bond becomes more gentle with increasing λ. 

                                   
Fig. 4. Variation of half-width and position of maximum of the exciton luminescence spectrum 

for the values of the parameter λ := 0.0, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 

0.055, 0.06, 0.065, 0.07, 0.075 and 0.08, Fig. 1 and 2, respectively.  

In this work, in contrast to the calculations in [7], the values of the function p(ɛ) only 

for recombining excitons at values of the parameter λ:= 0.0, 0.025 and 0.05, curves 1, 2, and 

3, respectively, are calculated and shown in Fig. 3. The vertical arrows in Fig. 3 indicate the 

positions of the maxima of the p(ɛ) functions for curves 1, 2 and 3, respectively. The 

dependence of the maximum position and luminescence half-width on the value of the 

parameter λ, according to formula (14), were calculated in more detail and illustrated in Fig. 4. 

The figures in Fig. 4 characterise the change in the half-width and the shift in the position of 

the maximum of the exciton luminescence spectrum for values of the parameter λ := 0.0, 0.01, 

0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075 and 0.08, 

fig.1 and 2, respectively. As can be seen from Fig. 4 (Fig. 1), the half-width of the exciton 

luminescence spectrum varies linearly reaching a value of the order of 6·ɛ0. The dependence 

of the maximum position shift in the exciton luminescence spectrum for the given values of 

the parameter λ at the above characteristic parameters of the CdS1-ХSeХ solid solution is thus 

determined in Fig. 4 (Fig. 2). A noticeable change in the position of the maximum of the energy 

distribution function p(ɛ) is observed at the transition to the three-parameter function (14) at 

points A and B calculated for λ:=0.0 and λ:=0.01, where the shift of the maximum position at 
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points A and B reaches the order of 1.45·ɛ0. Further, as can be seen from Fig. 4 (Fig. 2), the 

dependence of the maximum position on λ of the functions p(ɛ) varies linearly reaching a value 

of the order of 10·ɛ0. 

4. Conclusions 

Quantitative regularities of low-temperature luminescence spectra of CdS1-ХSeХ solid 

solutions, where the main channel of recombination of non-equilibrium carriers is their capture 

to localised states caused by fluctuations of solid solution concentration, have been studied. In 

the constructed model, the function p(ɛ) defining the luminescence spectrum of the solid 

solution and the energy density of the generation rate G(ɛ) for different exciton lifetimes have 

been calculated. For a more detailed comparison of theoretical calculations with experimental 

data [4,7], the three-parameter function (14) with the characteristic parameter λ was used for 

the function g(ɛ), the value of which noticeably affects the change in the half-width and 

position of the exciton luminescence spectrum maximum, which is confirmed by the results of 

numerical calculations. 
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