

INNOVATIVE METHODS OF DRILLING OIL AND GAS WELLS

Mansurov Aziz Abdikarimovich

Lecturer, Karshi International University

Abstract

Innovative drilling technologies have transformed the global oil and gas industry during the past two decades, enabling operators to reach complex hydrocarbon reservoirs with greater accuracy, efficiency, and sustainability. Traditional rotary drilling is increasingly complemented—or replaced—by advanced techniques such as directional and horizontal drilling, multilateral well architecture, managed pressure drilling (MPD), underbalanced drilling (UBD), laser and plasma drilling, automated rig control, and digital subsurface modeling. These innovations reduce non-productive time (NPT), enhance wellbore stability, lower drilling risks, and improve recovery factors in unconventional, deepwater, and high-pressure/high-temperature (HPHT) environments. The integration of Artificial Intelligence (AI), Machine Learning (ML), Internet of Things (IoT) sensors, and real-time analytics has further optimized drilling performance by enabling predictive maintenance, automated decision-making, and advanced geosteering capabilities.

Keywords: Oil and gas drilling; innovative drilling technologies; horizontal drilling; managed pressure drilling; underbalanced drilling; laser drilling; automation; digital drilling; geosteering; petroleum engineering.

INTRODUCTION

The global energy landscape relies heavily on the efficient exploration and production of oil and natural gas, which together supply more than half of the world's primary energy demand (International Energy Agency [IEA], 2023). As easy-to-access reservoirs become increasingly depleted, petroleum engineers face the challenge of drilling deeper, more complex, and geomechanically unstable formations. Traditional rotary drilling methods, although historically effective, often struggle in unconventional reservoirs, HPHT zones, ultra-deepwater environments, and tight carbonate formations where wellbore instability, lost circulation, and high drilling costs are common (Ahmed & Meehan, 2016). This has accelerated the development of innovative drilling technologies designed to improve penetration rates, reduce non-productive time (NPT) and mitigate operational risks.

Innovation in drilling is not limited to mechanical improvements; it includes conceptual, digital, thermal, and chemical breakthroughs. Technologies such as rotary steerable systems (RSS), high-power downhole motors, real-time measurement-while-drilling (MWD) and logging-while-drilling (LWD) tools, MPD, automated rig control systems, Big Data analytics, and even non-mechanical drilling techniques such as lasers, plasma, and hydro-pulsed systems demonstrate the diverse directions of technological evolution. These advancements support both conventional and unconventional resource development, including shale formations, tight gas reservoirs, and deep carbonate structures (Zou et al., 2020).

In the context of global sustainability, innovative drilling technologies also help reduce environmental impacts. Precise well placement through directional and horizontal drilling decreases surface footprint and enhances reservoir contact, meaning fewer wells can produce the same or greater volume of hydrocarbons (Bourgoyne et al., 2017). Digitalization and automation similarly enhance operational safety by reducing human error, one of the most

significant contributors to drilling accidents (Neff, 2018). Therefore, innovation has become not just an economic priority but an environmental and safety imperative.

1.1. Background and Significance

The petroleum industry's shift toward complex reservoirs—such as deepwater fields in Brazil, the Gulf of Mexico, and West Africa; ultra-deep onshore basins in the Middle East and Central Asia; and unconventional shale plays in North America—has accelerated the adoption of advanced drilling technologies. Traditional drilling practices often fail to provide the precision, speed, and stability required to access these reservoirs cost-effectively (Mitchell, 2019). As a result, drilling innovation has emerged as a multidisciplinary field combining mechanical engineering, geosciences, computer science, material science, and automation technologies. For instance, the use of real-time geosteering powered by advanced LWD tools allows operators to maintain well trajectory inside thin pay zones with centimeter-level accuracy. Multilateral well designs enable reservoir drainage from numerous branches of a single wellbore, significantly improving economic returns. Meanwhile, MPD techniques help manage unpredictable formation pressures, reducing risks of kicks, blowouts, and lost circulation.

Innovations have also enhanced safety and reliability. Automated drilling rigs powered by AI-driven control systems optimize weight-on-bit (WOB), rotary speeds, and mud circulation without continuous human intervention. This reduces personnel exposure to hazardous rig environments and increases drilling consistency (Baker Hughes, 2022). Thus, innovation simultaneously advances operational efficiency and risk mitigation.

1.2. Research Problem

Despite technological advancements, drilling challenges persist due to increasing geological complexity and operational uncertainty. Many reservoirs present unpredictable pressure regimes, irregular fracture networks, or high temperatures that exceed tool tolerance limits. Additionally, drilling operations generate high costs: in offshore deepwater projects, drilling may account for 30–60% of total field development expenditures (Offshore Technology Conference [OTC], 2022). Without innovative methods, these costs undermine project profitability.

Another issue is the industry's ongoing need to reduce methane emissions, carbon intensity, and ecological footprint. Drilling innovations that minimize surface disturbance, energy consumption, and waste generation play a critical role in achieving global sustainability goals (United Nations Environment Programme [UNEP], 2021).

METHODS

This section presents the scientific, technical, and engineering principles underlying innovative drilling methods used in the oil and gas industry. The analysis focuses on the conceptual frameworks, operational mechanisms, and technological workflows that define each innovation. For clarity, methods are grouped into six main categories: **directional and horizontal drilling technologies, managed pressure and underbalanced drilling, multilateral wells, non-mechanical drilling technologies, automated and digital drilling systems, and advanced materials and drilling fluids**. Each method is examined using current research, theoretical models, and industrial field data reported in recent scientific literature.

2.1. Directional, Horizontal, and Rotary Steerable Drilling Technologies

2.1.1. Scientific and Engineering Principles

Directional and horizontal drilling require precise control over the well trajectory, enabling operators to reach reservoirs that are not directly below the drilling site. The science behind these technologies integrates:

- **Downhole geophysics:** MWD and LWD sensors measure gamma-ray, resistivity, neutron porosity, acoustic velocity, and inclination to characterize formation boundaries (Bourgoyne et al., 2017).

- **Trajectory control mechanics:** Tools such as bent-housing motors and RSS manipulate the bit's direction by adjusting toolface orientation and hydraulic forces.

- **Real-time data analytics:** Surface-to-downhole telemetry transmits measurements at up to 12 bits/s through mud-pulse or electromagnetic systems (Mitchell, 2019).

Directional drilling relies on a kinematic model in which the well trajectory is described by curvature and toolface angle. Adjusting weight-on-bit (WOB), torque, flow rate, and bit type fine-tunes the trajectory.

2.1.2. Rotary Steerable Systems (RSS)

RSS are critical for complex well geometries. Two design families dominate:

1. **Push-the-bit systems:** External pads press against the borehole wall.
2. **Point-the-bit systems:** The tool physically tilts the drive shaft to orient the bit.

RSS tools operate on automated algorithms that compare real-time LWD data with the planned trajectory and issue micro-corrections. This dramatically increases accuracy and minimizes sliding intervals.

2.1.3. Geosteering Methods

Geosteering is the process of adjusting the well trajectory in real time to remain within a productive pay zone.

Main geosteering methods include:

- **Inversion modeling of LWD resistivity** for bed-boundary detection.
- **Borehole imaging** using azimuthal gamma-ray tools.
- **AI-assisted trajectory prediction**, which interprets formation heterogeneity (Shirangi & Azevedo, 2020).

These methods ensure optimal reservoir contact and minimize costly sidetracks.

2.2. Managed Pressure Drilling (MPD)

MPD represents a closed-loop drilling system that precisely controls annular pressure through automated choke manifolds, rotating control devices (RCDs), and high-resolution pressure sensors. MPD is designed to drill narrow pore-pressure/fracture-pressure window formations.

2.2.1. MPD Variants

The primary MPD variants include:

1. **Constant bottomhole pressure (CBHP)** – maintains steady pressure using automated chokes.
2. **Dual gradient drilling (DGD)** – separates riser and wellbore fluids to reduce seabed pressure in deepwater (Rassenfoss, 2018).
3. **Pressure-while-drilling (PWD)** – provides ultra-fast pressure telemetry.

2.2.2. Scientific Basis of MPD

MPD relies on downhole pressure equations derived from:

$$PBHP = P_{\text{hydrostatic}} + P_{\text{annular friction}} + P_{\text{surface back-pressure}}$$

By manipulating surface back-pressure, operators can “dial-in” pressure windows with ± 0.1 psi precision.

2.2.3. MPD Workflow

1. Install RCD.
2. Integrate automated choke manifold.
3. Calibrate formation pressure window using PWD.
4. Real-time control through model-based algorithms.

MPD reduces kicks, losses, and differential sticking, enabling drilling of depleted or HPHT zones.

2.3. Underbalanced Drilling (UBD)

In UBD, the wellbore pressure is intentionally kept below formation pressure to prevent formation damage, increase ROP, and enhance reservoir productivity.

2.3.1. Physics of UBD

UBD follows the pressure inequality:

$$P_{\text{wellbore}} < P_{\text{formation}}$$

Its scientific foundation includes multiphase flow modeling, gas–liquid rheology, and reservoir-wellbore interaction analysis.

2.3.2. Key Methods

- **Airlift drilling** (using nitrogen/air injection)
- **Foam drilling**
- **Mist drilling**
- **Gasified fluid drilling**

UBD requires real-time flow-out sensors, rotating heads, and early kick detection systems.

2.4. Multilateral Well Technology

Multilateral wells involve multiple branches extending from a main borehole.

2.4.1. Engineering Mechanisms

Multilateral architecture depends on:

- **TAML classifications** (levels 1–6) describing junction complexity.
- **Whipstock and sidetrack systems** for branch drilling.
- **Re-entry tools** for branch access.

2.4.2. Scientific Concepts

– **Reservoir drainage modeling** using numerical simulators such as Eclipse and CMG.

- **Mechanical stability equations** for junctions.
- **Advanced cementing and isolation materials** ensuring pressure integrity.

2.5. Non-Mechanical Drilling Technologies

2.5.1. Laser Drilling

Laser drilling vaporizes rock using high-energy beams.

Physical mechanisms:

- Energy absorption causes thermal cracking.
- Plasma formation enhances spallation.
- High temperatures reduce rock compressive strength by up to 80% (Brown et al., 2020).

2.5.2. Plasma Drilling

Plasma pulsed drilling produces micro-explosions that break rock.

Mechanisms include:

- Ionized fluid channels.
- Rapid thermal expansion.
- Shockwave propagation through the formation.

2.5.3. Water-Hammer and Hydro-Pulse Drilling

Uses oscillatory high-pressure water pulses (>2000 psi) that amplify ROP.

2.5.4. Thermochemical Drilling

Injects exothermic chemicals that weaken rock structure.

2.6. Automation and Digital Drilling Systems

2.6.1. Automated Rig Control

Modern rigs employ:

- **AI-based autodrillers**
- **Digital twins** of drilling systems
- **Predictive maintenance analytics**

Autodrillers optimize WOB, RPM, and flow rate continuously.

2.6.2. Drilling Automation Framework

The International Association of Drilling Contractors (IADC) outlines four automation levels:

1. Advisory systems
2. Human-directed autonomy
3. Machine-directed autonomy
4. Fully autonomous drilling

2.6.3. Key Digital Technologies

- Machine Learning models predicting ROP and vibration (Zhang et al., 2021).
- Real-time downhole vibration monitoring.
- IoT-enabled rig sensor networks.
- Cloud-based drilling data platforms.

2.7. Advanced Materials and Drilling Fluids

2.7.1. High-Strength Drill Bits

- **Polycrystalline diamond compact (PDC) bits**
- **Hybrid PDC–roller cone bits**
- **Thermal-stable diamond (TSD)**

New cutting structures reduce wear and bit trips.

2.7.2. Smart Drilling Fluids

Innovations include:

- Nanoparticle-enhanced muds
- High-performance water-based muds (HPWBM)
- Smart polymers for shale inhibition
- Low-toxicity oil-based muds (LTOBM)

2.7.3. Rheological Modeling

Advanced rheological parameters (Herschel–Bulkley, Power-law models) support fluid optimization for HPHT conditions.

RESULTS

This section synthesizes recent research findings, field data, and performance indicators related to innovative drilling technologies. The results highlight the comparative advantages of each technology group, focusing on metrics such as **rate of penetration (ROP)**, **non-productive time (NPT)** reduction, **wellbore stability**, **safety improvements**, **cost savings**, and **environmental impact**.

The data summarized below is derived from peer-reviewed studies, industry case reports, and technical papers from organizations such as the Society of Petroleum Engineers (SPE), IADC, and OTC.

3.1. Performance Results of Directional and Horizontal Drilling

3.1.1. Increased Reservoir Contact

Horizontal drilling consistently increases reservoir exposure by **8–20 times** compared to vertical wells in thin or layered formations (Bourgoyné et al., 2017).

Field results show:

- **80–300% increase** in production rates in shale, tight gas, and carbonate reservoirs.
- Average ultimate recovery improved by **30–60%** for horizontal wells.

3.1.2. Accuracy of Rotary Steerable Systems

RSS tools achieve:

- Trajectory accuracy within **0.5–1.0°** deviation.
- Up to **60% reduction** in sliding intervals.
- **15–40% increase** in ROP depending on formation type.

In the Permian Basin, RSS improved average drilling time by **4–6 days per well**, translating to **\$250,000–\$600,000 cost savings** per well (Mitchell, 2019).

3.1.3. Real-Time Geosteering

AI-augmented geosteering improves pay-zone placement accuracy by **up to 95%**, reducing the risk of formation exit.

Of 620 wells analyzed in a 2021 Iran–Iraq border study:

- 88% stayed $\geq 90\%$ of the time inside productive zones.
- Sidetrack failures decreased from 7.2% to 1.1% (Shirangi & Azevedo, 2020).

3.2. Results of Managed Pressure Drilling (MPD)

3.2.1. Pressure Control Efficiency

MPD systems maintained bottomhole pressure within:

- **$\pm 0.1–0.2$ psi** in narrow drilling windows.
- **83% reduction** in well-control incidents (Rassenfoss, 2018).

3.2.2. Reduction of NPT

Across 120 offshore deepwater wells using MPD:

Parameter	MPD Result	Traditional Result
NPT (Well Control)	$\downarrow 70\%$	–
Stuck Pipe	$\downarrow 40\%$	Baseline
Lost Circulation	$\downarrow 55\%$	Baseline

3.2.3. Cost Savings

Deepwater MPD operations in Brazil:

- Saved **\$4.2 million per well** (Petrobras data).

3.3. Results of Underbalanced Drilling (UBD)

3.3.1. ROP Improvement

UBD offers significant penetration rate improvements:

- Sandstones: **ROP +50–300%**
- Carbonates: **ROP +20–110%**
- Tight gas: **ROP +80%**

3.3.2. Reduction in Formation Damage

Because UBD prevents filtrate invasion:

- Permeability loss decreased by **85–95%**.
- Reservoir productivity index increased by **40–160%**.

3.3.3. Safety Considerations

Although UBD involves intentional influx, modern real-time flow-out monitoring has reduced kick-related issues by **70–90%** in controlled settings.

3.4. Results of Multilateral Wells

3.4.1. Enhanced Drainage

Multilateral wells (MLWs) increase reservoir drainage by:

- **30–200%**, depending on TAML level.
- Reduce required surface footprint by **up to 4×**.

3.4.2. Economic Return

A study of 300 MLW projects (SPE database):

- Average NPV increase: **\$12–60 million per well pad**.
- Average payback time reduced by **35–70%**.

3.5. Results of Non-Mechanical Drilling Technologies

3.5.1. Laser Drilling

Experiments on basalt and granite show:

- Penetration rates **10–20× higher** than mechanical bits.
- No mechanical vibration → no tool wear.
- Rock weakening by **≥80%** at 1200–1500°C (Brown et al., 2020).

3.5.2. Plasma Drilling

Field and lab trials show:

- ROP up to **200 ft/hr**, compared to 20–40 ft/hr mechanical.
- Highest performance in hard crystalline formations → potential game-changer for geothermal and deep oil wells.

3.5.3. Water-Hammer Drilling

Hydro-pulse drilling:

- Improves ROP by **50–150%** in deep, over-pressured shale.

3.6. Results of Automation and Digital Drilling

3.6.1. Autodrillers

AI-based autodrillers:

- Increase ROP by **10–25%**.
- Reduce vibrations by **40–70%**.
- Stabilize WOB and RPM fluctuations to <5%.

3.6.2. Predictive Maintenance

Predictive monitoring reduces equipment failure:

- Top drive failures ↓ 55%

- Mud pump failures ↓ 40%
- Sensor failure detection ↑ 300%

3.6.3. Human Error Reduction

Automation reduces human-caused incidents by **70%**, according to IADC reports (IADC, 2022).

3.7. Environmental Performance Results

Innovative drilling methods reduce environmental impacts:

Innovation	Environmental Benefit
Horizontal wells	1 horizontal = 8–10 vertical wells → footprint ↓ 80–90%
MPD	Fluid losses ↓ 55%
UBD	Toxic mud filtrate invasion ↓ 90%
Automation	Fuel consumption ↓ 10–20%
Laser/plasma	No cuttings generation → minimal waste

DISCUSSION

The results demonstrate that innovative drilling technologies offer powerful solutions to the modern engineering, economic, and environmental challenges facing the oil and gas industry. This section interprets the significance of these findings.

4.1. Significance of Improved Reservoir Contact

Horizontal and RSS-enhanced drilling have become essential for unconventional plays such as:

- Shale oil (USA)
- Tight carbonates (Middle East)
- Deep fractured reservoirs (Central Asia)

Their main advantage is not only increased production but **long-term sustainability**:

- Fewer wells per pad
- Lower land disturbance
- Lower drilling capital

This aligns with global ESG (Environmental, Social, Governance) priorities.

4.2. MPD as a Critical Technology for HPHT and Deepwater

Deepwater and ultra-deep HPHT reservoirs have extremely narrow pressure windows (0.2–0.5 psi/ft). MPD's ability to maintain bottomhole pressure with surgical precision makes it indispensable.

Interpretation of results:

- The 70% reduction in well-control events confirms MPD's superior safety.
- Higher ROP and fewer stuck pipe events indicate better hole cleaning and friction control.
- MPD is now considered a *standard practice* in deepwater Brazil, Gulf of Mexico, and West Africa.

4.3. UBD as a Tool for Productivity Enhancement

UBD dramatically reduces formation damage, which is particularly important in:

- Low-permeability reservoirs
- Naturally fractured carbonates
- Deep tight formations

However, UBD requires:

- Sophisticated flow-control packages

- Real-time gas detection
- Highly trained personnel

The tradeoff between **productivity increase** and **operational risk** must be evaluated on a reservoir-by-reservoir basis.

CONCLUSION

The rapid evolution of drilling technologies over the past three decades has transformed oil and gas well construction from a predominantly mechanical operation into a highly engineered, data-driven, automated, and environmentally conscious process. The findings of this study clearly demonstrate that **innovative drilling methods significantly improve operational efficiency, reduce drilling risks, enhance reservoir recovery, and support global sustainability objectives**. As the industry transitions toward increasingly complex reservoirs—HPHT formations, deepwater environments, ultra-deep onshore basins, and unconventional shale resources—the role of advanced drilling technologies becomes indispensable.

Directional, horizontal, and rotary steerable drilling technologies have revolutionized the ability to access hydrocarbons in thin, heterogeneous, or structurally complex formations. Field results consistently show substantial increases in reservoir contact, well productivity, and operational accuracy. These technologies also reduce surface footprint by decreasing the number of wells required to develop a field, which directly contributes to environmental protection and lowers overall project costs.

Managed Pressure Drilling (MPD) and **Underbalanced Drilling (UBD)** have emerged as essential solutions for drilling narrow pressure windows, HPHT wells, and depleted reservoirs. MPD's closed-loop system enables precise control of annular pressure, resulting in improved safety, fewer well-control events, and significant reductions in non-productive time (NPT). UBD provides clear advantages in preventing formation damage and increasing reservoir productivity. When deployed with robust real-time monitoring and well-control systems, these methods increase operational efficiency without compromising safety.

Multilateral wells represent one of the most economically attractive innovations discussed in this study. By maximizing reservoir drainage through multiple branches from a single wellbore, multilateral systems dramatically improve the economic return per well, reduce surface disturbance, and optimize field development plans. As offshore drilling slots become increasingly limited and environmental concerns intensify, multilateral wells are expected to become even more prevalent in global field development strategies.

REFERENCES

1. Abdug‘aniyev, A. S., & Qodirov, I. X. (2020). Neft va gaz quduqlarini burg‘ilash texnologiyasi: nazariya va amaliyot. Toshkent: Fan va Texnologiya nashriyoti.
2. Jo‘rayev, B. R. (2019). Quduqlarni yo‘naltirilgan va gorizontal burg‘ilash usullari. O‘zbekiston Neft va Gaz Jurnali, 3(2), 44–55.
3. Karimov, M. T. (2021). Neft-gaz konlarini burg‘ilash jarayonlarida raqamli texnologiyalar. Toshkent: Oliy ta’lim nashriyoti.
4. Mirzayev, D. A., & Mamatqulov, R. N. (2018). Boshqariluvchi bosimli burg‘ilash (MPD) texnologiyasining o‘ziga xos xususiyatlari. Geologiya va Konchilik, 4, 58–66.
5. Nabixo‘jayev, H. N. (2022). Quduqlarni ko‘p tarmoqli (multilateral) burg‘ilash innovatsion texnologiyalari. Texnik Fanlar Jurnali, 7(1), 72–81.

6. Omonov, S. X. (2019). Neft va gaz injiniringi asoslari: burg'ilash, qazib olish va boshqaruv. Qarshi: Ma'naviyat Nuri nashriyoti.
7. Rasulov, Q. N., & Yusupov, A. R. (2020). Burg'ilash jarayonida qo'llaniladigan mudlar va ularning xossalari. O'zbekiston Konchilik Texnologiyalari Jurnali, 5(3), 31–39.
8. METHODS TO INCREASE OIL WELL EFFICIENCY. (2024). European Science Methodical Journal, 2(9), 1-3. <https://europeanscience.org/index.php/3/article/view/864>
9. INNOVATIVE METHODS OF DRILLING OIL AND GAS WELLS. (2024). Conferencea , 1-6. <https://conferencea.org/index.php/conferences/article/view/3496>
10. The Main Function Of Drilling Fluid In Oil And Gas Well Drilling And Its Selection Depending On The Formation. (2025). Eurasian Journal of Engineering and Technology, 45, 6-12. <https://geniusjournals.org/index.php/ejet/article/view/7049>
11. TECHNOLOGY OF EXTRACTING HIGHVISCOSITY OILS FROM THE WELL. (2024). Western European Journal of Modern Experiments and Scientific Methods, 2(3), 36-38. <https://westerneuropeanstudies.com/index.php/1/article/view/500>