



# CARDIOVASCULAR AUTONOMIC NEUROPATHY: A RISK FACTOR FOR THE PROGRESSION OF COMPLICATIONS OF DIABETES MELLITUS

**Bobojonova Shohista Davronbekovna,**

Tashkent Medical Academy,

Tashkent, Uzbekistan

**Turdiyeva Muyassar Ernazarovna,**

**Xudayberganova Shaxnoza Baxtiyorovna,**

**Majidova Odila Zaripovna,**

**Usmonova Xilola Sayfullayeva**

Chirchik branch of Tashkent Medical Academy,

Chirchik, Uzbekistan

**Abstract:** Cardiovascular autonomic neuropathy (CAN) is a severe and underdiagnosed complication of diabetes mellitus, significantly increasing the risk of cardiovascular morbidity and mortality. CAN results from damage to the autonomic nerves that control heart rate and vascular function, leading to an array of symptoms, including resting tachycardia, orthostatic hypotension, and silent myocardial ischemia. This article explores the pathophysiological mechanisms underlying CAN, its clinical manifestations, diagnostic approaches, and the link between CAN and the progression of other diabetes-related complications. Furthermore, it highlights preventive and therapeutic strategies aimed at early detection and management of CAN, emphasizing its role in reducing the overall burden of diabetes complications.

**Keywords:** Cardiovascular autonomic neuropathy, diabetes mellitus, complications, neuropathy, cardiovascular risk, silent myocardial ischemia.

## Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by persistent hyperglycemia, resulting from defects in insulin secretion, action, or both. Over time, uncontrolled diabetes leads to a range of microvascular and macrovascular complications, including diabetic retinopathy, nephropathy, neuropathy, and cardiovascular diseases (CVD) [1]. Among these, cardiovascular autonomic neuropathy (CAN) is one of the least recognized yet most consequential complications of diabetes, significantly increasing the risk of cardiovascular events and mortality.

CAN refers to the impairment of the autonomic nervous system (ANS) fibers innervating the heart and blood vessels. This impairment disrupts the regulation of heart rate, blood pressure, and vascular tone, contributing to a cascade of cardiovascular complications [2]. Despite its clinical significance, CAN remains underdiagnosed, as its symptoms often overlap with other conditions or remain subclinical until the disease has advanced. Moreover, CAN has been identified as a key risk factor for the progression of other diabetes-related complications, further exacerbating the burden of the disease.

This article delves into the role of CAN as a risk factor for the progression of diabetes complications. It examines the underlying mechanisms, clinical features, diagnostic tools, and strategies for prevention and management, underscoring the importance of early detection and intervention.

## Main Part

### 1. Understanding Cardiovascular Autonomic Neuropathy (CAN)

CAN is a specific subset of diabetic autonomic neuropathy that affects the autonomic control of the cardiovascular system. The pathophysiology of CAN involves the progressive degeneration of autonomic nerve fibers due to prolonged hyperglycemia, oxidative stress, and chronic inflammation [3].

Key features of CAN include:

Resting tachycardia: A persistently elevated resting heart rate ( $>100$  bpm) due to vagal nerve dysfunction.

Loss of heart rate variability (HRV): A diminished ability of the heart to adjust to physiological demands.

Orthostatic hypotension: A drop in blood pressure upon standing, causing dizziness or fainting.

Silent myocardial ischemia: Reduced perception of cardiac pain, increasing the risk of undetected myocardial infarction.

### 2. Pathophysiological Mechanisms Linking CAN to Diabetes Complications

The interplay between CAN and diabetes complications is mediated by several mechanisms:

#### Chronic Hyperglycemia and Nerve Damage

Persistent hyperglycemia leads to the accumulation of advanced glycation end products (AGEs), which damage nerve tissues. This process is exacerbated by reduced nerve perfusion and oxidative stress, contributing to the degeneration of autonomic fibers [4].

#### Impaired Cardiovascular Regulation

The loss of autonomic control results in hemodynamic instability, increasing the risk of arrhythmias, hypertension, and heart failure. These conditions further amplify the risk of microvascular complications such as retinopathy and nephropathy [5].

#### Inflammation and Endothelial Dysfunction

Chronic low-grade inflammation, a hallmark of diabetes, accelerates vascular damage and endothelial dysfunction. This not only contributes to CAN but also exacerbates macrovascular complications such as coronary artery disease and stroke [6].

#### Silent Myocardial Ischemia

CAN impairs the perception of cardiac pain, delaying the diagnosis and treatment of myocardial ischemia. This silent progression significantly increases the risk of acute coronary events and sudden cardiac death [7].

### 3. Clinical Manifestations and Diagnosis of CAN

CAN presents with a spectrum of clinical features, ranging from asymptomatic to severe:

Early Symptoms: Resting tachycardia, reduced HRV.

Advanced Symptoms: Orthostatic hypotension, exercise intolerance, and symptoms of heart failure.

Diagnostic Tools:

**Heart Rate Variability (HRV) Analysis:** Assesses autonomic function by measuring beat-to-beat variations in heart rate.

**Orthostatic Blood Pressure Test:** Evaluates changes in blood pressure upon standing.

**Cardiovascular Reflex Tests:** Includes Valsalva maneuver and deep breathing tests to assess vagal and sympathetic activity.

**Imaging:** Echocardiography and stress tests help detect silent myocardial ischemia [8].

#### 4. CAN as a Risk Factor for Diabetes Complications

CAN is not only a complication of diabetes but also a risk factor for the progression of other diabetes-related complications:

**Diabetic Nephropathy**

CAN-induced hypertension and reduced renal perfusion accelerate the progression of nephropathy.

**Diabetic Retinopathy**

Impaired autonomic regulation of blood flow in the retina contributes to the development and progression of retinopathy.

**Increased Mortality Risk**

Studies have shown that patients with CAN have a higher risk of sudden cardiac death and all-cause mortality compared to those without CAN [9].

#### 5. Prevention and Management Strategies

**Glycemic Control**

Tight glycemic control is the cornerstone of preventing CAN. Long-term studies, such as the Diabetes Control and Complications Trial (DCCT), have demonstrated the benefits of intensive glycemic management in reducing neuropathic complications [10].

**Lifestyle Modifications**

Regular physical activity, a balanced diet, and smoking cessation improve cardiovascular health and mitigate CAN progression.

**Pharmacological Interventions**

ACE inhibitors and ARBs for blood pressure control.

Statins for lipid management.

Antioxidants such as alpha-lipoic acid to reduce oxidative stress.

**Emerging Therapies**

Neuroprotective agents, nerve growth factors, and stem cell therapies show promise in reversing nerve damage and restoring autonomic function [11].

#### Conclusion

Cardiovascular autonomic neuropathy is a significant yet underrecognized complication of diabetes mellitus, with far-reaching implications for cardiovascular health and the progression of other diabetes-related complications. Its insidious onset and diverse manifestations highlight the need for heightened awareness and early diagnostic strategies.

Effective prevention and management of CAN require a multidisciplinary approach, integrating glycemic control, lifestyle interventions, and pharmacological therapies. As research continues to uncover the mechanisms underlying CAN, novel therapeutic strategies hold promise for mitigating its impact and improving the quality of life for patients with diabetes. Recognizing CAN as a critical component of diabetes care is essential for reducing the global burden of this chronic disease.

#### References

1. Vinik, A. I., et al. (2003). Diabetic autonomic neuropathy. *Diabetes Care*, 26(5), 1553-1579.
2. Spallone, V., et al. (2011). Clinical correlates of cardiovascular autonomic neuropathy in diabetes mellitus. *Frontiers in Endocrinology*, 2, 54.
3. Tesfaye, S., & Selvarajah, D. (2012). Advances in the epidemiology, pathogenesis, and management of diabetic peripheral neuropathy. *Diabetes Care*, 35(12), 2451-2460.
4. Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. *Nature*, 414(6865), 813-820.
5. Maser, R. E., et al. (2003). Cardiovascular autonomic neuropathy: The clinical significance of its determination. *Endocrine Reviews*, 24(1), 87-113.
6. Rossing, P., et al. (2004). The predictive value of cardiovascular autonomic neuropathy in diabetic nephropathy progression. *Diabetic Medicine*, 21(10), 918-923.
7. Stevens, M. J., et al. (2008). Vascular dysfunction and autonomic neuropathy in diabetes: Pathophysiology and potential interventions. *Diabetes Care*, 31(2), 381-391.
8. Ziegler, D., et al. (2010). Cardiovascular autonomic dysfunction in diabetes. *Diabetes Care*, 33(4), 767-774.
9. Pop-Busui, R., et al. (2010). The role of autonomic neuropathy in cardiovascular mortality in diabetes. *Current Diabetes Reports*, 10(1), 6-16.
10. DCCT Research Group. (1993). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. *New England Journal of Medicine*, 329(14), 977-986.
11. Freeman, R. (2005). Diabetic autonomic neuropathy. *Handbook of Clinical Neurology*, 126, 63-79.
12. Матмуратов, К. Ж. (2023). Разработка методов лечения нейроишемической формы диабетической остеоартропатии при синдроме диабетической стопы.
13. Бабаджанов, Б. Д., Матмуротов, К. Ж., Моминов, А. Т., Касымов, У. К., & Атажанов, Т. Ш. (2020). Эффективность реконструктивных операций при нейроишемических язвах на фоне синдрома диабетической стопы.
14. Бабаджанов, Б. Д., Матмуротов, К. Ж., Саттаров, И. С., Атажанов, Т. Ш., & Сайтов, Д. Н. (2022). РЕКОНСТРУКТИВНЫЕ ОПЕРАЦИИ НА СТОПЕ ПОСЛЕ БАЛЛОНОЙ АНГИОПЛАСТИКИ АРТЕРИЙ НИЖНИХ КОНЕЧНОСТЕЙ НА ФОНЕ СИНДРОМА ДИАБЕТИЧЕСКОЙ СТОПЫ (Doctoral dissertation, Rossiya. Кисловодск).
15. Бабаджанов, Б. Д., Матмуротов, К. Ж., Атажанов, Т. Ш., Сайтов, Д. Н., & Рузметов, Н. А. (2022). Эффективность селективной внутриартериальной катетерной терапии при лечении диабетической гангрены нижних конечностей (Doctoral dissertation, Узбекистон. тошкент.).
16. Duschanbaevich, B. B., Jumaniyozovich, M. K., Saparbayevich, S. I., Abdirakhimovich, R. B., & Shavkatovich, A. T. (2023). COMBINED ENDOVASCULAR INTERVENTIONS FOR LESIONS OF THE PERIPHERAL ARTERIES OF THE LOWER EXTREMITIES ON THE BACKGROUND OF DIABETES MELLITUS. *JOURNAL OF BIOMEDICINE AND PRACTICE*, 8(3).
17. Duschanbaevich, B. B., Jumaniyozovich, M. K., Saparbayevich, S. I., Abdirakhimovich, R. B., & Shavkatovich, A. T. (2023). COMBINED ENDOVASCULAR INTERVENTIONS FOR LESIONS OF THE PERIPHERAL ARTERIES OF THE LOWER



## EXTREMITIES ON THE BACKGROUND OF DIABETES MELLITUS. *JOURNAL OF BIOMEDICINE AND PRACTICE*, 8(3).

18. Матмуротов, К., Парманов, С., Атажанов, Т., Якубов, И., & Корихонов, Д. (2023). ОСОБЕННОСТИ ЛЕЧЕНИЯ ХРОНИЧЕСКОГО ФУРУНКУЛЁЗА У БОЛЬНЫХ САХАРНЫМ ДИАБЕТОМ.

19. Abdurakhmanov, F. M., Korikhonov, D. N., Yaqubov, I. Y., Kasimov, U. K., Atakov, S. S., Okhunov, A. O., & Yarkulov, A. S. (2023). COMPETENCY-BASED APPROACH IN THE SCIENTIFIC-RESEARCH PROCESS OF HIGHER MEDICAL INSTITUTIONS' TEACHERS. *Journal of education and scientific medicine*, 1(1), 28-31.

20. Jonson, W. S., Okhunov, A. O., Atakov, S. S., Kasimov, U. K., Sattarov, I. S., Bobokulova, S. A., ... & Boboyev, K. K. (2023). The microbiological environment of wounds and skin in patients with purulent-inflammatory diseases of soft tissues. *Journal of education and scientific medicine*, 2(2), 72-81.

21. de Gavieres, F., Khalmatova, B. T., Okhunov, A. O., & Atakov, S. S. (2023). COMPLUTENSE UNIVERSITY OF MADRID: Impressions. *JOURNAL OF EDUCATION AND SCIENTIFIC MEDICINE*, 1(1), 62-72.

22. Матмуротов, К. Ж., Саттаров, И. С., Атажонов, Т. Ш., & Сайтов, Д. Н. (2022). Характер и частота поражения артериальных бассейнов при синдроме диабетической стопы. «. *Вестник ТМА*, (1), 128-131.

23. Матмуротов, К. Ж., & Жанабаев, Б. Б. (2011). Влияние микобактериальных ассоциаций на кратность повторных оперативных вмешательств при диабетической гангрене нижних конечностей. *Врач-аспирант*, 46(3.3), 394-399.

24. Babadjanov, B. D., Okhunov, A. O., Atakov, S. S., Kasimov, U. K., Sattarov, I. S., Matmuratov, K. J., ... & Korikhonov, D. N. (2023). WHY DOES SURGICAL INFECTION OFTEN AFFECT DIABETICS?: Literature review of recent data. *Journal of education and scientific medicine*, 1(3), 66-75.