

CURRENT ISSUES IN THE USE OF ANTIBIOTICS

Sharipova Matluba Tursunovna

Teacher of the Department of "medical fundamental sciences" namangan branch of Tashkent chemical International University

Annotation: The use of antibiotics has become a cornerstone of modern medicine, but their misuse and overuse have led to serious global health concerns. This article examines the current issues related to antibiotic use, including antibiotic resistance, overprescription, regulatory challenges, and the need for new drug development. The study incorporates a literature review, methodologies for analyzing antibiotic impact, and discussions on potential solutions to mitigate associated risks.

Keywords: Antibiotics, antibiotic resistance, overuse, prescription practices, drug development, healthcare policies, antimicrobial stewardship.

Antibiotics play a crucial role in treating bacterial infections, preventing complications, and saving millions of lives worldwide. However, their widespread and sometimes inappropriate use has led to significant challenges, such as antibiotic resistance, adverse health effects, and reduced efficacy of treatments. The World Health Organization (WHO) and other health agencies emphasize the urgent need for stricter regulations and better public awareness regarding antibiotic use. This paper explores the current challenges in antibiotic usage and proposes potential strategies for addressing these issues.

Antibiotics have played a crucial role in modern medicine by treating bacterial infections, preventing complications from surgery, and improving overall public health. However, their widespread use has led to significant challenges, including antibiotic resistance, overprescription, and environmental concerns. This paper explores the current issues in the use of antibiotics in detail.

Antibiotic Resistance: A Global Threat

Antibiotic resistance occurs when bacteria evolve mechanisms to survive antibiotic treatment, making infections harder to treat. This is one of the most pressing issues in healthcare today, as resistant infections lead to longer hospital stays, higher medical costs, and increased mortality.

Emergence of Superbugs

- Multi-drug-resistant organisms (MDROs): These are bacteria resistant to multiple antibiotics, making treatment extremely difficult. Examples include:

- Methicillin-resistant *Staphylococcus aureus* (MRSA)
- Carbapenem-resistant *Enterobacteriaceae* (CRE)
- Vancomycin-resistant *Enterococci* (VRE)
- Drug-resistant tuberculosis (XDR-TB)

- Superbugs are a serious concern in hospitals and community settings, as they spread quickly and limit treatment options.

Causes of Antibiotic Resistance

- Overuse in Medicine: Doctors often prescribe antibiotics for viral infections like colds and flu, where they are ineffective.

- Incomplete Courses of Treatment: Patients stopping antibiotic treatment early allows bacteria to survive and develop resistance.

- Lack of New Antibiotics: Pharmaceutical companies have slowed down antibiotic research and development due to financial constraints.

Consequences of Antibiotic Resistance

- Higher Mortality Rates: WHO estimates that antibiotic resistance could cause 10 million deaths annually by 2050.

- Increased Healthcare Costs: Treating resistant infections requires more expensive drugs and longer hospital stays.

- Limited Treatment Options: Some infections are becoming untreatable due to complete resistance to available antibiotics.

Overprescription & Misuse in Human Medicine

Many antibiotics are prescribed unnecessarily, increasing the risk of resistance.

Inappropriate Prescriptions

- For Viral Infections: Antibiotics are ineffective against viruses, yet they are frequently prescribed for conditions like:

- Common cold

- Influenza

- Bronchitis

- Viral pneumonia

- Broad-Spectrum Antibiotics Overuse: Doctors sometimes prescribe broad-spectrum antibiotics instead of targeted treatments, which kills both harmful and beneficial bacteria, increasing resistance risks.

Self-Medication & Public Misuse

- Purchasing Antibiotics Without a Prescription: In many countries, people buy antibiotics over the counter and take incorrect doses.

- Incomplete Courses: Many patients stop taking antibiotics once they feel better, allowing bacteria to survive and adapt.

- Sharing Antibiotics: Some people use leftover antibiotics or share them with others without medical advice.

Overuse in Agriculture & Veterinary Medicine

The use of antibiotics in food production is a major contributor to resistance.

Antibiotics in Livestock Farming

- Growth Promotion & Disease Prevention: In many countries, farmers give antibiotics to healthy animals to promote growth and prevent infections.

- Transmission to Humans: Resistant bacteria from livestock can transfer to humans through:

- Consumption of contaminated meat

- Contact with animal waste

- Environmental contamination of water and soil

Antibiotic Use in Aquaculture

- Overuse in Fish Farming: Antibiotics are heavily used in fish farms to prevent disease outbreaks, leading to resistant bacteria in marine environments.

- Impact on Human Health: Resistant bacteria in seafood can cause infections that are difficult to treat.

Government Regulations & Bans

- Some countries have banned antibiotic use for growth promotion in animals (e.g., the European Union), while others still allow it.

- Stricter regulations and monitoring are needed to control antibiotic use in food production.

Lack of Public Awareness & Education

Many people do not understand the risks associated with antibiotic misuse.

Misinformation About Antibiotics

- Some patients believe antibiotics can cure any infection, including viral illnesses.
- Many people do not understand the importance of completing the full course of antibiotics. The overuse and misuse of antibiotics are driven by several factors, including patient expectations, lack of diagnostic tools, and insufficient physician training on antimicrobial stewardship. The economic burden of antibiotic resistance is rising, putting additional pressure on healthcare systems. Innovative policies, such as strict prescription guidelines, public education campaigns, and investment in research for new antibiotics, are necessary to combat these issues effectively.

Conclusions

The current state of antibiotic use presents a critical challenge that requires a multi-faceted approach. To mitigate the risks associated with antibiotic resistance, it is essential to implement stricter prescription policies, enhance public awareness about responsible antibiotic use, and promote research on alternative therapies. Governments and health organizations must work together to establish global regulatory frameworks that control antibiotic distribution and usage effectively. Further studies should focus on developing rapid diagnostic tools to prevent unnecessary antibiotic prescriptions and explore innovative treatment options beyond traditional antibiotics.

References.

1. Infectious Diseases Society of America. Bad bugs, no drugs: as antibiotic discovery stagnates, a public health crisis brews. Alexandria, VA: Infectious Diseases Society of America, 2004
2. Fauci A. Infectious diseases: considerations for the 21st century. Clin Infect Dis 2001; 32: 675-685; <http://dx.doi.org/10.1086/319235>
3. World Health Organization (WHO).Antimicrobial resistance: global report on surveillance. Geneva, 2014
4. Alanis A. Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res 2005; 36: 697-705; <http://dx.doi.org/10.1016/j.arcmed.2005.06.009>
5. Laxminarayan R, Duse A, Wattal C, et al. Antibiotic resistance - the need for global solutions. Lan cet Infect Dis 2013; 13: 1057-98; [http://dx.doi.org/10.1016/S1473-3099\(13\)70318-9](http://dx.doi.org/10.1016/S1473-3099(13)70318-9)
6. European Centre for Disease Prevention and Control (ECDC). Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net).2013
7. Fischbach MA, Walsh CT. Antibiotics For Emerging Pathogens. Science 2009; 325: 1089-93; <http://dx.doi.org/10.1126/science.1176667>