

INFECTIONS TRANSMITTED FROM MOTHER TO NEWBORN AND THEIR EFFECTS ON NEONATAL OUTCOMES

Ahmadjonova Robiyakhon Abdumutallib qizi

Student of Central Asian Medical University

Annotation

This review explores the mechanisms of vertical transmission, clinical features, diagnostics, and treatment of these infections. It highlights how pathogens such as cytomegalovirus, toxoplasmosis, rubella, herpes simplex virus, and severe acute respiratory syndrome coronavirus 2 affect neonatal outcomes, causing congenital anomalies, preterm birth, growth restriction, and even death. Evidence shows that early detection, timely antimicrobial therapy, and maternal screening can greatly reduce adverse outcomes. The review offers evidence-based recommendations and outlines future research priorities, underscoring the importance of integrated maternal-fetal care to improve neonatal health.

Keywords: vertical transmission, congenital infections, neonatal outcomes, maternal-fetal medicine, cytomegalovirus, toxoplasmosis, perinatal morbidity, intrauterine infections, placental pathology, antimicrobial therapy

Maternal infections transmitted to the newborn remain a major challenge in perinatal medicine, contributing significantly to neonatal illness and death worldwide. In the United States alone, such infections cause 1,000-2,500 infant deaths or severe damage annually, with around 400,000 premature births and over 20,000 fetal or neonatal deaths. Vertical transmission occurs via the placenta, ascending genital tract infections, or during delivery. These infections not only cause immediate neonatal complications but also long-term neurodevelopmental impairments, sensory deficits, and lifelong disabilities. TORCH pathogens - including toxoplasmosis, syphilis, hepatitis B, rubella, cytomegalovirus, and herpes simplex virus - are key contributors, with newer pathogens like Zika virus and severe acute respiratory syndrome coronavirus 2 also implicated. Advances in diagnostics, immune understanding, and therapies have improved management, yet knowledge gaps remain about maternal immunity, placental function, fetal development, and pathogen factors. Resource-limited settings face particular challenges due to poor access to screening and care. This review synthesizes evidence on the mechanisms of vertical transmission, neonatal outcomes, diagnostic and therapeutic strategies, and priorities for future research. A deeper understanding of these processes is crucial to develop prevention strategies, improve management, and reduce the global burden of these infections.

MAIN BODY

Maternal-fetal transmission of infections results from complex interactions among pathogen traits, maternal immunity, placental integrity, and fetal susceptibility. The main routes are transplacental transmission and passage through the reproductive tract during delivery, with additional risk from invasive procedures or trauma. Transplacental transmission is especially important, as some pathogens bypass placental defenses - including physical barriers, immune surveillance, and molecular transport systems - to infect the fetus. The timing of maternal infection influences outcomes: early gestation infections often cause severe anomalies and growth restriction, while later infections mainly affect neonatal health. Primary infections pose higher transmission risk than reactivations due to higher viral loads and

immature placental defenses early in pregnancy. Maternal immunity significantly affects risk, with immunocompromised mothers more vulnerable and less able to protect the fetus. Transferred maternal antibodies can provide partial, temporary protection. The fetal immune system's immaturity and tolerance mechanisms also increase susceptibility to infection and pathogen persistence. Placental inflammation, triggered by infections, disrupts placental function through cytokines, complement activation, and immune cell infiltration, leading to insufficiency, preterm labor, and growth restriction - even without direct fetal infection.

The spectrum of neonatal outcomes associated with maternally transmitted infections encompasses a broad range of acute and chronic complications that vary significantly based on the specific pathogen, timing of infection, and individual susceptibility factors. Congenital cytomegalovirus infection, the most common congenital viral infection worldwide, exemplifies the diverse clinical presentations possible with vertical transmission. While the majority of infected infants remain asymptomatic at birth, approximately ten to fifteen percent develop clinically apparent disease characterized by intrauterine growth restriction, hepatosplenomegaly, thrombocytopenia, and central nervous system involvement including microcephaly and intracranial calcifications. Neurodevelopmental complications represent among the most devastating long-term consequences of maternal-fetal infections. Maternal cytomegalovirus infection is linked to cerebral palsy in infants, while congenital toxoplasmosis frequently results in chorioretinitis, hydrocephalus, and intracranial calcifications that may not become apparent until months or years after birth. These neurological sequelae often require lifelong supportive care and significantly impact quality of life for affected individuals and their families. Congenital rubella syndrome, though now rare in countries with effective vaccination programs, demonstrates the severe teratogenic potential of maternal viral infections. The classic triad of sensorineural hearing loss, congenital heart disease, and cataracts represents only a portion of the potential complications, which may also include microcephaly, developmental delays, and endocrine dysfunction. The severity and extent of complications correlate directly with the gestational age at maternal infection, with first-trimester infections carrying the highest risk for multiple organ system involvement. Herpes simplex virus transmission during delivery poses significant risks for neonatal herpes, a potentially devastating condition with mortality rates approaching thirty percent in disseminated disease and substantial morbidity among survivors. Neonatal herpes presentations range from localized skin, eye, and mouth lesions to central nervous system involvement and disseminated disease affecting multiple organ systems. Early recognition and prompt antiviral therapy significantly improve outcomes, emphasizing the importance of maternal screening and appropriate delivery management. The emergence of severe acute respiratory syndrome coronavirus 2 as a significant perinatal pathogen has highlighted the ongoing evolution of maternal-fetal infection risks. Infection with severe acute respiratory syndrome coronavirus 2 causing coronavirus disease 2019 in pregnancy is known to confer risks to both the pregnant patient and fetus. While vertical transmission appears less common than with traditional teratogenic infections, maternal coronavirus disease 2019 has been associated with increased risks of preterm birth, stillbirth, and neonatal intensive care unit admission. Growth and developmental outcomes represent critical long-term considerations for infants affected by maternal infections. Intrauterine growth restriction commonly occurs with various infectious agents through multiple mechanisms including direct fetal infection, placental inflammation, and maternal systemic illness. These growth effects may persist beyond the neonatal period, with affected children demonstrating increased risks for metabolic

dysfunction, cardiovascular disease, and neurodevelopmental delays throughout childhood and adolescence.

Contemporary diagnostic approaches for maternal-fetal infections rely on sophisticated laboratory methods that combine serological testing, molecular diagnostics, and advanced imaging techniques to establish infection status, assess transmission risk, and guide therapeutic interventions. The complexity of diagnosing congenital infections stems from the need to differentiate between maternal and fetal infection, determine the timing of infection, and predict clinical outcomes based on laboratory findings. Maternal serological testing forms the foundation of screening programs for major teratogenic infections. The interpretation of serological results requires careful consideration of antibody classes, avidity testing, and sequential sampling to distinguish between acute and chronic infections. Immunoglobulin M antibodies typically indicate recent infection, though their persistence can complicate interpretation, while immunoglobulin G antibodies reflect either past infection or vaccination. Immunoglobulin G avidity testing provides additional temporal information, as low-avidity antibodies suggest recent primary infection while high-avidity antibodies indicate infections that occurred more than four months previously. Molecular diagnostic techniques, particularly polymerase chain reaction amplification, have revolutionized the detection of infectious agents in maternal and fetal specimens. These methods offer superior sensitivity and specificity compared to traditional culture techniques and provide rapid results that facilitate timely clinical decision-making. Real-time polymerase chain reaction assays can quantify viral loads, which correlates with transmission risk and clinical outcomes for several pathogens. The development of multiplex assays allows simultaneous detection of multiple pathogens, improving diagnostic efficiency and reducing costs. Prenatal diagnostic procedures, including amniocentesis and cordocentesis, enable direct assessment of fetal infection status when maternal testing suggests significant transmission risk. Amniocentesis performed after twenty weeks of gestation demonstrates high sensitivity and specificity for detecting fetal cytomegalovirus infection, with positive results indicating definitive fetal involvement. However, these invasive procedures carry inherent risks including miscarriage, and their application requires careful risk-benefit analysis based on maternal infection status, gestational age, and family preferences. Advanced prenatal imaging techniques provide valuable information regarding fetal complications associated with infectious agents. High-resolution ultrasound can detect structural abnormalities including microcephaly, intracranial calcifications, cardiac defects, and growth restriction that may indicate congenital infection. Fetal magnetic resonance imaging offers superior soft tissue contrast and can identify subtle brain abnormalities not visible on ultrasound, though its routine use remains limited by cost and availability considerations. Neonatal diagnostic approaches focus on confirming infection status in at-risk infants and identifying complications requiring immediate intervention. Traditional methods including viral culture and antigen detection have largely been replaced by molecular techniques that provide more rapid and sensitive results. Urine and saliva specimens collected within the first few weeks of life offer optimal sensitivity for detecting congenital cytomegalovirus infection, while cerebrospinal fluid analysis may be necessary to diagnose central nervous system involvement. The integration of multiple diagnostic modalities enhances diagnostic accuracy and clinical management. Combining maternal serological results with fetal imaging findings and, when indicated, invasive testing provides comprehensive assessment of infection risk and fetal status. This multimodal approach enables

personalized counseling regarding pregnancy management, delivery planning, and neonatal care requirements.

The management of maternal-fetal infections requires a multidisciplinary approach that encompasses maternal treatment, fetal monitoring, delivery planning, and neonatal care optimization. Therapeutic interventions aim to reduce maternal morbidity, decrease vertical transmission rates, minimize fetal complications, and optimize neonatal outcomes through evidence-based treatment protocols. Maternal antimicrobial therapy represents the primary intervention for many treatable infections, with treatment decisions guided by pathogen sensitivity patterns, pregnancy safety profiles, and potential for reducing vertical transmission. Spiramycin has emerged as the preferred treatment for maternal toxoplasmosis, demonstrating good placental penetration and acceptable safety profiles during pregnancy. While spiramycin may not consistently prevent vertical transmission, it appears to reduce the severity of fetal complications when transmission occurs. Treatment duration typically extends for several weeks, with monitoring for maternal adverse effects and therapeutic response. Antiviral therapy for maternal herpes simplex virus infections has demonstrated significant benefits in reducing vertical transmission and neonatal complications. Suppressive acyclovir therapy initiated at thirty-six weeks of gestation reduces viral shedding at delivery and decreases the need for cesarean delivery in women with recurrent genital herpes. For women with primary genital herpes near term, intravenous acyclovir treatment may reduce viral shedding duration and transmission risk, though cesarean delivery remains recommended when active lesions are present at delivery. The management of maternal cytomegalovirus infection presents unique challenges due to limited therapeutic options and uncertainty regarding treatment efficacy. Hyperimmune globulin therapy has shown promise in some studies for reducing vertical transmission rates and fetal complications, though results remain inconsistent and optimal treatment protocols have not been established. Ongoing clinical trials are investigating antiviral agents including ganciclovir and valganciclovir for maternal treatment, though their safety during pregnancy requires careful evaluation. Fetal therapy represents an emerging area of investigation for specific maternal-fetal infections. Intrauterine transfusion may be indicated for severe fetal anemia resulting from parvovirus B19 infection, with excellent outcomes when performed by experienced centers. Experimental approaches including direct fetal antiviral therapy are under investigation, though their clinical application remains limited to research settings. Delivery management requires careful consideration of transmission risks, maternal condition, and fetal status. Cesarean delivery is recommended for women with active genital herpes lesions at delivery, as it reduces neonatal herpes risk by approximately fifty percent compared to vaginal delivery. However, the decision must balance infection prevention with surgical risks, particularly for preterm deliveries where neonatal outcomes may be influenced by delivery route selection. Neonatal management protocols emphasize early recognition of infection, prompt initiation of appropriate therapy, and comprehensive supportive care. High-risk infants require close monitoring for signs of infection, with low thresholds for diagnostic testing and empirical treatment initiation. Antiviral therapy for neonatal herpes simplex virus infection has transformed outcomes, with intravenous acyclovir treatment reducing mortality and improving neurological outcomes when initiated promptly.

Effective prevention of maternal-fetal infections requires comprehensive strategies that address primary prevention through vaccination and behavioral modifications, secondary prevention through screening and early detection, and tertiary prevention through optimal management of established infections. These multilayered approaches have demonstrated

significant success in reducing the burden of congenital infections in populations with robust public health infrastructure. Vaccination programs represent the most successful intervention for preventing maternal-fetal transmission of vaccine-preventable infections. The virtual elimination of congenital rubella syndrome in countries with effective measles, mumps, and rubella vaccination programs demonstrates the profound impact of immunization on reducing congenital infections. Preconception counseling should include assessment of vaccination status and administration of indicated vaccines, with particular attention to ensuring immunity against rubella, varicella, and hepatitis B virus. Behavioral interventions play crucial roles in reducing exposure risks for non-vaccine-preventable infections. Education regarding cytomegalovirus prevention focuses on hygiene measures including frequent handwashing, avoiding contact with young children's saliva and urine, and not sharing food or utensils with young children. These recommendations are particularly important for women working in childcare settings or healthcare environments where exposure risks may be elevated. Prenatal screening programs enable early detection of maternal infections and implementation of appropriate interventions to reduce adverse outcomes. Universal screening for syphilis, hepatitis B virus, and human immunodeficiency virus has become standard practice in most developed countries, with demonstrated benefits for reducing vertical transmission and improving neonatal outcomes. However, screening for other infections such as cytomegalovirus and toxoplasmosis remains controversial due to limited therapeutic options and unclear cost-effectiveness. Maternal infections frequently have adverse effects on perinatal outcomes, and striking mortality reductions can be obtained by antenatal interventions related to malaria, human immunodeficiency virus, syphilis, and tetanus. The implementation of evidence-based interventions including antimalarial prophylaxis, antiretroviral therapy for human immunodeficiency virus, penicillin treatment for syphilis, and tetanus vaccination has substantially reduced maternal and neonatal mortality in many regions. Global health disparities significantly impact the burden of maternal-fetal infections, with resource-limited settings experiencing disproportionately high rates of preventable infections and their complications. Strengthening healthcare infrastructure, improving access to prenatal care, and implementing cost-effective screening and treatment programs represent critical priorities for reducing global inequities in maternal and neonatal outcomes. Digital health technologies, through their accessibility and scalability, hold promise in improving the quality of care across diverse health-care settings. Mobile health applications, telemedicine platforms, and electronic health records can enhance screening program implementation, improve adherence to treatment protocols, and facilitate specialist consultation in resource-limited settings.

The landscape of maternal-fetal infections continues to evolve with the emergence of new pathogens, development of novel therapeutic approaches, and recognition of previously unrecognized infection-outcome relationships. Within the traditional classification category of 'other,' there are increasing emerging viral pathogens that can pass from mother to fetus, including Ebola virus, Zika virus, highlighting the need for adaptive surveillance and research systems. Advances in genomic sequencing and molecular epidemiology are providing unprecedented insights into pathogen evolution, transmission dynamics, and virulence factors that influence vertical transmission risk. These technologies enable rapid characterization of emerging pathogens and development of targeted diagnostic and therapeutic approaches. The application of whole-genome sequencing to maternal-fetal medicine may facilitate personalized risk assessment and treatment selection based on pathogen characteristics and host genetic factors. Immunological research is elucidating the complex mechanisms

underlying maternal immune responses, placental barrier function, and fetal immune development that influence infection susceptibility and outcomes. Understanding these mechanisms may enable development of novel therapeutic approaches including immunomodulatory therapies, enhanced vaccines, and targeted interventions to strengthen placental barrier function. The development of fetal therapy approaches represents a promising area for improving outcomes in severe congenital infections. Advances in fetal surgery techniques, intrauterine drug delivery systems, and fetal stem cell therapy may provide options for treating established fetal infections and preventing or reversing associated complications. However, these approaches require extensive safety and efficacy evaluation before clinical implementation. Artificial intelligence and machine learning applications hold potential for improving risk prediction, diagnostic accuracy, and treatment optimization in maternal-fetal infections. These technologies may enable integration of complex clinical, laboratory, and imaging data to provide personalized risk assessments and treatment recommendations. Additionally, predictive modeling may identify women at highest risk for infection-related complications, enabling targeted interventions and resource allocation. Climate change and global migration patterns are influencing the geographic distribution of vector-borne and tropical infections that can affect pregnancy outcomes. Understanding these changing epidemiological patterns will be crucial for developing appropriate surveillance systems, prevention strategies, and clinical management protocols for emerging infection risks.

In conclusion, maternal-to-newborn infections remain a major challenge in perinatal medicine, causing serious short- and long-term effects. Although advances in pathophysiology, diagnostics, and therapies - such as rubella vaccination and antimicrobial treatment - have improved outcomes, infections like cytomegalovirus, toxoplasmosis, and emerging pathogens continue to pose risks, particularly in resource-limited settings. Early screening and timely treatment are essential to reduce harm, alongside stronger healthcare systems and affordable prevention strategies. Future research should focus on innovative therapies, immunomodulation, and personalized care supported by genomics and digital tools. Reducing the global impact of these infections demands sustained research, public health efforts, and multidisciplinary cooperation to safeguard maternal and neonatal health and prevent avoidable lifelong consequences.

References:

1. Abdel-Rahman, M. E., Abdelbar, A. M., & Al-Khayat, H. A. (2023). TORCH (Toxoplasmosis, Other, Rubella, Cytomegalovirus, Herpes Simplex Virus) infection and the enigma of anomalous fetal development: Pregnancy puzzles. *Cureus*, 15(1), e33479.
2. Aggarwal, R., Sentz, J., & Miller, M. A. (2020). Role of zinc administration in prevention of childhood diarrhea and respiratory illnesses: A meta-analysis. *Pediatrics*, 119(6), 1120-1130.
3. Allotey, J., Stallings, E., Bonet, M., Yap, M., Chatterjee, S., Kew, T., ... & Thangaratinam, S. (2020). Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: Living systematic review and meta-analysis. *BMJ*, 370, m3320.
4. Berger, A., Brito, S., Coelho, T., Cordeiro, M., Kalapothakis, Y., Chagas, C., & Lamounier, J. (2023). Neonatal outcomes and indirect consequences following

maternal SARS-CoV-2 infection in pregnancy: A systematic review. *Archives of Disease in Childhood - Fetal and Neonatal Edition*, 108(2), 174-180.

5. Bustamante, M., Oomah, B. D., Oliveira, W. P., Burgos-Díaz, C., Rubilar, M., & Shene, C. (2022). Probiotics and prebiotics potential for the care of skin, female urogenital tract, and respiratory tract. *Folia Microbiologica*, 65(2), 245-264.
6. Cannon, M. J., Westbrook, K., Levis, D., Schleiss, M. R., Thackeray, R., & Pass, R. F. (2012). Awareness of and behaviors related to child-to-mother transmission of cytomegalovirus. *Preventive Medicine*, 54(5), 351-357.
7. Cardenas, I., Means, R. E., Aldo, P., Koga, K., Lang, S. M., Booth, C., ... & Mor, G. (2010). Viral infection of the placenta leads to fetal inflammation and sensitization to bacterial products predisposing to preterm labor. *Journal of Immunology*, 185(2), 1248-1257.
8. Centers for Disease Control and Prevention. (2024). Sexually transmitted infections treatment guidelines, 2021. *Morbidity and Mortality Weekly Report*, 70(4), 1-187.
9. Coyne, C. B., & Lazear, H. M. (2016). Zika virus - reigniting the TORCH. *Nature Reviews Microbiology*, 14(11), 707-715.