

DETECTION OF POTATO VIRUS Y INFECTION USING IMMUNOCROMATOGRAPHIC ASSAY

N.I. Shonazarova¹, F.B. Eshboev², V.B. Fayziev³, E.I. Yuldashev³

¹Samarkand University of Veterinary Medicine, Animal Husbandry and Biotechnology, Tashkent Branch, Tashkent, Uzbekistan.

²Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan.

³Chirchik State Pedagogical University, Tashkent, Uzbekistan.

Corresponding author e-mail: nasibashonazarova78@gmail.com

Abstract. It is well known that in the modern era, the continuous expansion of the distribution range of phytopathogenic viruses necessitates the use of rapid diagnostic methods with high sensitivity for their detection. This, in turn, requires the development of reliable and efficient tools for early diagnosis. Therefore, sensitive approaches such as polymerase chain reaction (PCR) and immunological methods (ELISA, immunochromatographic tests) have been widely applied. In the present study, we report the results of detecting *Potato virus Y* (PVY) using the immunochromatographic assay, which is considered a rapid and convenient method. Its effectiveness and applicability were scientifically evaluated and discussed. During the study, samples were collected from artificially inoculated indicator plants exhibiting disease symptoms, as well as from naturally growing reservoir plants found in virus-infected potato fields and along field margins. These samples were tested using the ImmunoStrip lateral flow assay system. The analysis revealed that the presence of two red signals (lines) on the test strips clearly indicated virus infection in the examined plants. The application of the ImmunoStrip method under field conditions demonstrated that *Potato virus Y* can be rapidly detected, making this approach an important diagnostic tool for monitoring and preventing the spread of the virus. According to the research results, Potato Virus Y (PVY) was detected in 64% of the plants tested using the ImmunoStrip test. Additionally, a weak viral reaction was observed in 18% of the plants, while the virus was not detected in the remaining 18% of the samples. These results confirm the widespread prevalence of PVY.

Keywords: *Potato virus Y* (PVY), indicator plants, reservoir plants, polymerase chain reaction (PCR), immunochromatographic assay, ImmunoStrip, rapid diagnostics.

Introduction

In recent years, due to various climate changes, the expansion of transportation networks, and the steady increase in interregional trade of agricultural products, the geographical distribution of plant viruses has been widening. This, in turn, has led to a higher incidence of plant infections and a rise in the number of newly emerging virus strains and isolates. Such circumstances highlight the urgent need to enhance the efficiency of monitoring and management measures in the field of plant virology [7].

Based on numerous research findings, it can be stated that almost all plant species are susceptible to viral infections, which disrupt physiological processes and may result in yield losses of up to 50–80% [2].

Potato virus Y (PVY) is currently among the most widespread and economically important phytopathogens, causing significant reductions in both yield and crop quality. At a

time when the risk of phytopathogenic virus spread continues to increase, timely and accurate diagnosis has become crucial for sustainable agricultural production [3, 11].

Potato virus Y (PVY) is recognized as a major threat in agriculture, particularly in potato production. PVY belongs to the family *Potyviridae* and typically induces mosaic patterns, leaf deformation, and necrotic spots on infected plants. These symptoms disrupt the photosynthetic process and significantly reduce crop yield (Gray et al., 2010) [10, 12].

According to the literature, Potato virus Y (PVY) can reduce potato yield by 3.8–80%. Experimental studies conducted by A.L. Ambrosov scientifically confirmed that PVY infection may decrease yield by up to 60.4% and reduce starch content in potato tubers by 1.8% (Crosslin et al., 2005) [5].

PVY is mainly transmitted mechanically through aphids, and early detection is therefore a critical factor in its management (Salazar, 2003) [6, 10, 11, 13]. For this reason, controlling and preventing the spread of viral diseases, as well as mitigating their negative impacts, requires the use of highly accurate, rapid, and reliable diagnostic methods [2, 9].

The role of diagnostics in preventing the spread of plant viral diseases is of paramount importance. With the increasing emergence of new plant viruses driven by climate change and the intensification of agricultural trade, early detection through reliable diagnostic tools is essential to limit their dissemination.

Commonly used approaches for the identification of phytopathogenic viruses include enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR). These methods rely on virus-specific antibodies or genetic sequences, thereby allowing the detection of only the targeted virus. However, both ELISA and PCR are relatively expensive, time-consuming, and require sophisticated equipment and reagents for successful implementation [8, 13].

In recent years, low-cost methods that do not require specialized equipment and allow rapid analysis within 10–15 minutes have been developed. One such approach is the immunochromatographic assay (ICA). ICA can be performed in several formats, and highly practical variants are now available [2].

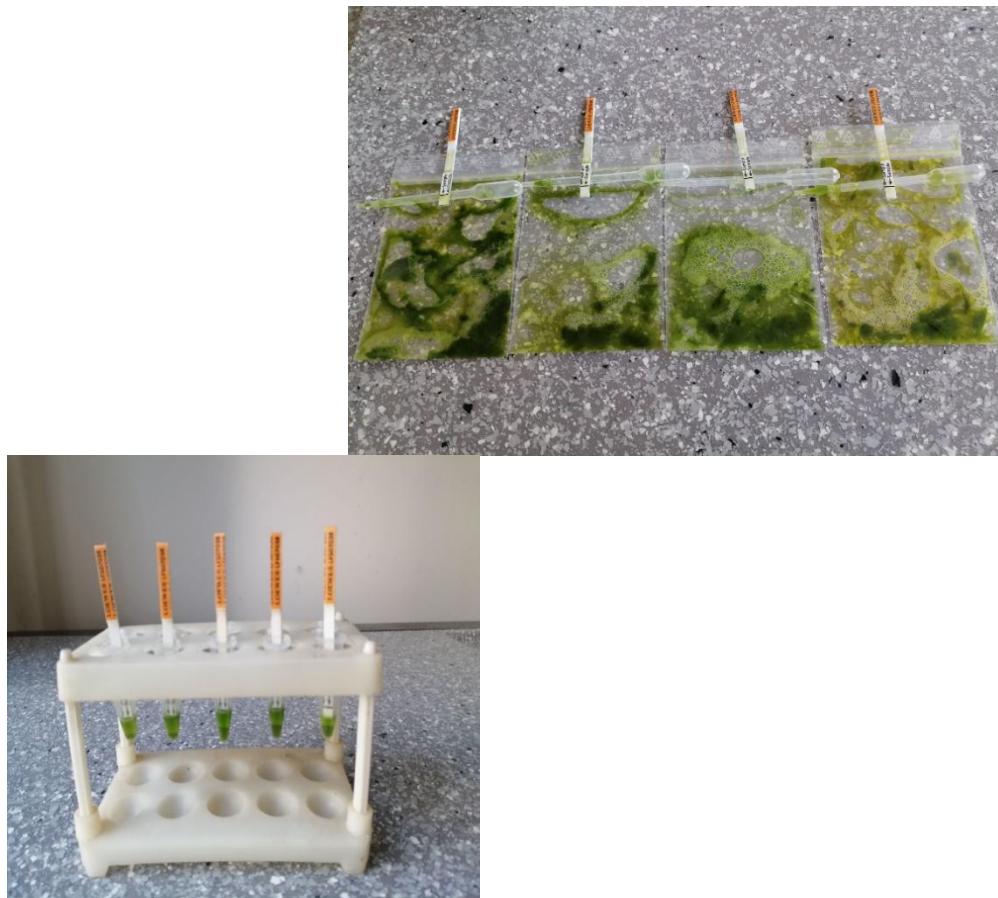
Immunochromatographic assay is an immunochemical diagnostic method based on the principle of thin-layer chromatography and represents a rapid immunodiagnostic tool for the easy detection of biological samples. The method relies on the specific interaction between an antigen and its corresponding antibody and is commonly implemented in the form of rapid test systems, using specialized test strips, dipsticks, or cassettes [2, 4, 14].

The principle of the immunochromatographic assay is based on the movement of liquid samples along membranes, resulting in the formation of specific visible lines [1, 14].

Immunochromatographic tests have been successfully applied not only for potato but also for other members of the *Solanaceae* family, including tomato, pepper, eggplant, and tobacco, in the detection of PVY. In the development of these technologies, researchers from China, the Netherlands, the United States, and Japan have played a leading role, and their contributions have been crucial in establishing effective diagnostic systems against Potato virus Y (Mumford et al., 2016) [10]. In recent years, immunochromatographic assays have become widely used for the rapid field diagnosis of plant viruses.

Therefore, the present study aimed to evaluate the detection of *Potato virus Y* using the ImmunoStrip method.

Materials and Methods

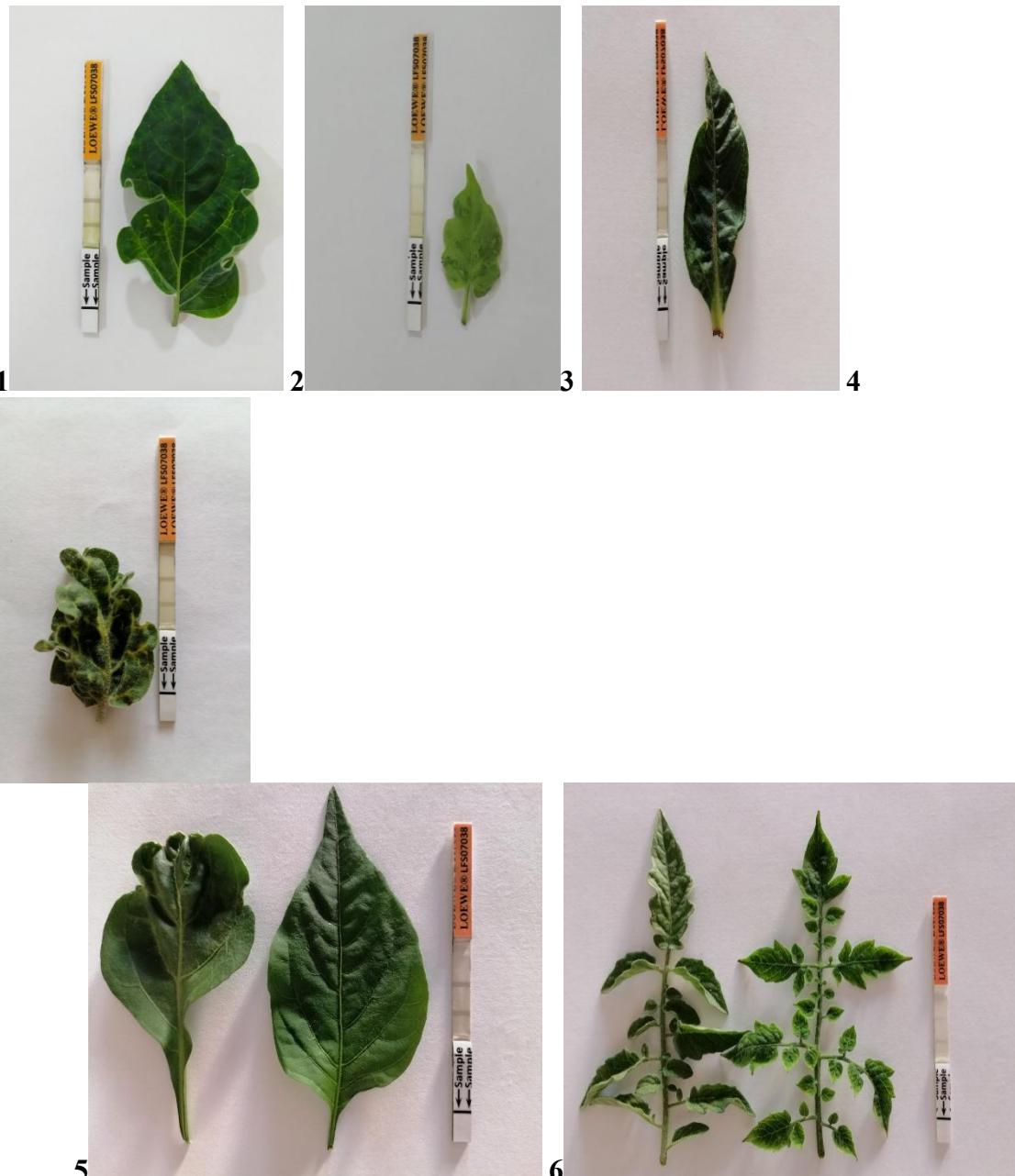


In this study, a set of indicator plants mechanically inoculated with PVY, several naturally growing reservoir plants located near PVY-infected crops, and an immunochromatographic test kit manufactured by LOEWE Biochemica (Germany) (catalog number: LFS07038/50) were used.

For the purposes of this study, visual monitoring of potato fields was conducted in several districts of the Tashkent region. During field surveys, samples were collected from plants exhibiting disease symptoms, as identified based on scientific references, and transported to the laboratory in polyethylene bags. In the subsequent stage of the research, symptomatic leaf samples were homogenized in phosphate buffer (1:1), followed by centrifugation at 6000 rpm for 15 minutes. The resulting supernatant, representing the viral sap, was separated into individual tubes and used for further experiments.

Viral sap was mechanically inoculated onto *Nicotiana samsun* plants grown under laboratory and greenhouse conditions and the plants were subsequently observed for symptom development. Symptomatic tissues were then homogenized and reinoculated onto a series of indicator plants. For diagnostic purposes, an **immunochromatographic test kit (catalogue No. LFS07038/50) manufactured by LOEWE Biochemica, Germany** was employed. From the symptomatic parts of the plants primarily leaf tissue fragments of approximately 1.0–1.5 cm² were excised using sterile, disinfected cutting tools. Each fragment was transferred into a sterile plastic bag, followed by the addition of 3 ml of phosphate buffer provided in the kit. The plant tissue was thoroughly homogenized with a pestle until completely disrupted.

From the resulting homogenate, 1.0–1.5 ml was carefully transferred into a sterile Eppendorf tube using a clean pipette. The sensitive end of an ImmunoStrip was then immersed into the prepared extract, and the reaction was monitored within the prescribed time. A positive result was indicated by the appearance of a distinct test line in addition to the control line, whereas the presence of only the control line confirmed a negative reaction (Figure 1).


Figure 1. Testing procedure on PVY-infected indicator plants using the ImmunoStrip assay.

Within 5–15 minutes of incubation, the ImmunoStrip assay revealed the appearance of two distinct red lines. The line formed near the sample application zone corresponded to the **test line**, indicating the presence of the pathogen. The second line, which consistently appeared regardless of the infection status, served as the **control line**, confirming that the assay had been performed correctly.

Results and Discussion

The experiment was conducted under greenhouse and laboratory conditions using indicator plants. Samples were collected both from indicator plants that developed characteristic symptoms and from naturally growing reservoir plants located near potato fields infected with Potato virus Y (PVY). Each sample was placed in polyethylene bags, transported to the laboratory, and subjected to further analysis.

Below, representative examples of diagnostic results obtained from several indicator plants using the ImmunoStrip lateral flow test system are presented (Figure 2).

Figure 2. ImmunoStrip assay results for *Datura metel* (1), *Nicotiana glutinosa* (2), *Dahlia* (3), *Solanum melongena* (4) *Capsicum annuum* (5) and *Solanum lycopersicum* (6).

The results of the immunochromatographic assays conducted for the detection of Potato virus Y (PVY) are presented in the table below (Table 1).

Table 1.

Detection and diagnosis of Potato virus Y (PVY) in cultivated and wild plant species using the immunochromatographic assay.

	Plant species	Sample type	Symptom characteristics	ICA result
1	<i>Solanum lycopersicum</i>	Leaf	Deformation, mosaic, necrosis	+
2	<i>Solanum melongena</i>	Leaf	Severe mosaic, deformation, chlorosis	+
3	<i>Capsicum annuum</i>	Leaf	Wavy deformation, mosaic	+
4	<i>Nicotiana tabacum cv. Samsun</i>	Leaf	Deformation, mosaic, vein darkening, necrosis	+
5	<i>Nicotiana glutinosa</i>	Leaf	Deformation, severe systemic mosaic	+
6	<i>Nicotiana tabacum cv. Dyubek</i>	Leaf	Deformation, mosaic, necrotic streaks	+
7	<i>Nicotiana tabacum cv. Vergenya</i>	Leaf	Deformation, systemic mosaic, necrosis	+
8	<i>Nicotiana rustica</i>	Leaf	Deformation, systemic mosaic	+
9	<i>Datura metel</i>	Leaf	Systemic chlorotic spots, mosaic, deformation	+
10	<i>Dahlia spp</i>	Leaf	Mosaic, leaf chlorosis	+
11	<i>Astrameriya</i>	Leaf	Systemic mosaic	±
12	<i>Petunia hybrida</i>	Leaf	Mild mosaic, chlorosis	+
13	<i>Physalis floridana</i>	Leaf	Severe mosaic, deformation, necrosis	+
14	<i>Solanum nigrum</i>	Leaf	Leaf distortion, mosaic	+
15	<i>Juglans regia L</i>	Leaf	Deformation, mosaic	±
16	<i>Prunus domestica L</i>	Leaf	Systemic chlorotic spots, mosaic	±
17	<i>Lactuca serriola</i>	Leaf	Deformation, systemic mosaic	+
18	<i>Artemisia vulgaris</i>	Leaf	Systemic mosaic	±
19	<i>Chenopodium album</i>	Leaf	Mosaic	-
20	<i>Chenopodium amaranticolor</i>	Leaf	Mosaic, chlorotic spots	+
21	<i>Chenopodium quinoa</i>	Leaf	Mosaic, chlorotic spots	+
22	<i>Alhagi</i>	Leaf	Mild mosaic	+
23	<i>Amaranthus retroflexus</i>	Leaf	Leaf distortion, mosaic	±
24	<i>Capsella bursa-pastoris (L.) Medik.</i>	Leaf	Mosaic	+
25	<i>Lactuca sativa L</i>	Leaf	Deformation, systemic mosaic	-
26	<i>Datura stramonium</i>	Leaf	Mosaic, leaf chlorosis	-
27	<i>Portulaca oleracea</i>	Leaf	Mosaic, chlorosis	-
28	<i>Rumex</i>	Leaf	Leaf mosaic	-

Note. In the table, the “+” symbol indicates that the presence of Potato virus Y (PVY) in indicator plants was clearly confirmed by the ImmunoStrip test. The “±” symbol indicates weak detection of the virus, suggesting that in such cases additional verification using more sensitive diagnostic methods is required. The “-” sign indicates a negative test result, meaning the virus was not detected.

Within the scope of the study, 28 plant samples (indicator and reservoir plants) suspected of being infected with Potato virus Y (PVY) were analyzed using the Immunochromatographic Assay (ICA) via the ImmunoStrip lateral flow test system. The results confirmed the extent of the virus's spread and the effectiveness of the ImmunoStrip method under field conditions. The analytical distribution of the total samples is as follows:

- Positive result (+): the PVY virus was clearly detected in 64% of the tested plants (18 species), which was confirmed by the distinct appearance of both the test line and the control line.

- Weak reaction (±): the presence of the virus was recorded as a weak reaction in 18% of the samples (5 species). These cases suggest a low virus concentration or a slow antibody reaction depending on the plant species, requiring further verification using more sensitive methods (e.g., PCR).

- Negative result (-): the virus was not detected in the remaining 18% of the samples (5 species); only the control line was visible, indicating that these plants were not infected with PVY.

The analysis results demonstrated that PVY is widespread not only in potato crops but also among important cultivated species such as *Solanum lycopersicum*, *Solanum melongena* and *Capsicum annuum*, as well as reservoir plants like *Datura metel* and *Lactuca serriola*. Specifically, the virus was found or a weak reaction was recorded in 23 out of 28 species (82%) tested in the experiment. This confirms the high risk of PVY persistence in the environment and among weeds.

Phytopathogenic viruses can be rapidly detected in the symptomatic tissues of infected plants using ImmunoStrip assays, as reported in the literature [Eshboev, 2015; Akhmadaliev, 2023].

Conclusion

Immunochromatographic assay is an effective tool for the rapid diagnosis of Potato virus Y (PVY), enabling the prompt detection of infected plants. It represents a convenient method for field-based identification of potato viral diseases. The simplicity and accessibility of this approach make it highly suitable for monitoring potato viral infections directly under field conditions. Due to its rapid results and minimal equipment requirements, the method can be applied not only in laboratory settings but also directly at agricultural sites. This facilitates timely implementation of control measures against virus spread, thereby minimizing yield losses and improving the quality of harvested potatoes.

Further research aimed at developing new test systems with higher sensitivity and specificity may lead to the creation of universal diagnostic tools for the early detection of various pathogens. Such advancements would have a significant impact on controlling viral diseases in plants and ensuring the overall sustainability of agricultural production.

According to the results of this study, when a number of indicator and reservoir plants infected with *Potato virus Y (PVY)* were diagnosed using the immunochromatographic assay, the appearance of two red lines on the ImmunoStrip confirmed the presence of the virus. The

use of this method provides opportunities for implementing rapid control measures to prevent the spread of viral diseases in plants.

References

1. Alekseev, Ya. I. **PCR Diagnostics in Modern Agrobiotechnology** // In: *Problems of Agrobiotechnology*. – Moscow: Rosinformagrotekh, 2012. – pp. 200–226.
2. Akhmadaliyev B.J. Isolation, Characterization, and Diagnostics of Viruses Infecting Tomato (*Lycopersicum esculentum* Mill.) / PhD Dissertation in Agricultural Sciences. Tashkent – 2023. p. 109.
3. Brown J. K., Reavy B. Immunochromatographic detection of plant viruses: Current trends and future perspectives // *Plant Pathology Journal*. – 2021. – Vol. 37. – P. 89-101
4. Drygin Yu. F., Blintsov A. N., Osipov A. P., Grigorenko V. G., Andreeva I. P., Uskov A. I., Varitsev Yu. A., Anisimov B. V., Novikov V. K., Atabekov J. G. High-Sensitivity Express Immunochromatographic Method for Detection of Plant Infection by Tobacco Mosaic Virus // *Biochemistry (Moscow)*, 2009, Vol. 74, No. 9, pp. 986-993.
5. Fayziyev V.B., Bakhtiyorova M.S., Botirova N.T., Sulaymonov O.A., Vakhobov A.Kh. **Detection of Potato Viruses Using ELISA and Control Measures (Guidelines)**. Tashkent, 2019..
6. Gray, S.; De Boer, S.; Lorenzen, J.; Karasev, A.; Whitworth, J.; Nolte, P.; Singh, R.; Boucher, A.; Xu, H. Potato Virus Y: An Evolving Concern for Potato Crops in the United States and Canada. *Plant Dis.* 2010. 94 (12), 1384–1397.
7. Jovliyeva D.T., Fayziyev V.B., Vakhobov A.Kh. **Identification of a Suitable Differential Test Indicator Host Plant for Isolation and Biological Purification of Potato Virus X** // *Bulletin of Agrarian Science of Uzbekistan*. – Tashkent, 2023. – No. 2(8), pp. 139–142. (03-00.00. No. 8)
8. Clarke J. D. Advances in lateral flow immunoassays for rapid detection of plant viruses // *Journal of Virological Methods*. – 2022. – Vol. 299. – P. 1-12.
9. Konareva T.N., Arshava N.V., Ryabov E.V., Generozov E.V., Zavriev S.K. The Use of Recombinant Antigens for the Diagnosis of Phytoviruses // *Modern Methods of Biotechnology in Crop Production, Animal Husbandry, and Veterinary Medicine (Methodical Recommendations)*. – Moscow: MSKhA, 1998. – pp. 27–41.
10. Lopez, M. M., Bertolini, E., Olmos, A., Caruso, P., Gorris, M. T., Llop, P., Penyalver, R., Cambra, M. Innovative tools for detection of plant pathogenic viruses. // *Biotechnology Advances*. -2018. –Vol. 36 (4). –P. 978-988.
11. Lebedev A.V., Ivanov P.P. **Methods for the Diagnosis of Viral Plant Diseases** // *Journal of Agrarian Research*. – 2020. – Vol. 45. – pp. 123–130.
12. Mumford, R., Boonham, N., Tomlinson, J., Barker, I. Advances in molecular phytodiagnostics – new solutions for old problems. // *European Journal of Plant Pathology*.- 2016. –Vol. 116 (1). - P.1-19.
13. Sungyeap Hong, Cheolho Lee. The Current Status and Future Outlook of Quantum Dot-Based Biosensors for Plant Virus. // *European Journal of Plant Pathology*.-2018. Korean Society of Plant Pathology The Plant Pathology Journal Mini-Review Open Access – 2018. – Vol. 34 (2). - P. 85-92
14. Chirkov S.N. **Immunochemical and Molecular Diagnostics of Viral Infections in Plants** 03.00.06 – Virology 03.00.23 – Biotechnology Abstract of the Dissertation for the Degree of Doctor of Biological Sciences Moscow, 2009. pp. 3–44.

15. Z.Sh, S., Mutalov, K. A., Temirov, A. A., Shonazarova, N. I., Suyunova, G. U., Fayzieva, N. B., Berdikulova, N. R. (2023). Molecular Identification of MDMV and its effects on physiological properties of Zea mays L. SABRAO J. Breed. Genet, 55(6), 1878-1885
16. Shonazarova, N. I., Eshboev, F. B., Fayziev, V. B. Study of the Impact of Potato Virus Y on the Content of Chlorophyll and Carotenoids in Plant Tissues. // News of the NUUz. – 2025. – T. – №. 3.1. 1. – pp. 157-160
17. Shonazarova, N. I., Eshboev, F. B., Fayziev, V. B. (2025). Identification of Symptoms of Potato Virus Y (PVY) in Indicator Plants. Modern Biology and Genetics, 2(12), 29-38.
18. Shonazarova, N. I., Fayziyev, V. B. (2021). Potato Viruses and Effective Control Measures Against Them. Academic research in educational sciences, 2(9), 955-965.