

INNOVATIVE DEVELOPMENT IN UZBEKISTAN: THE CHINESE EXPERIENCE

Mirzaev Kulmamat Djanzakovich

Professor of the Samarkand Institute of Economics and Service,
Doctor of Economics

Abstract: This article discusses issues of innovative development of digitalization issues in the conditions of Uzbekistan based on the experience of China.

Key words: technology, method, style, development, experience, digitalization.

Аннотация: В данной статье рассматриваются вопросы инновационного развития вопросов цифровизации в условиях Узбекистана на основе опыта Китая.

Ключевые слова: технология, метод, стиль, разработка, опыт, цифровизация.

In order to further develop large-scale reforms in our republic, it is expedient to deeply study the development of innovative economy in the experience of foreign countries. In this regard, the President of the Republic of Uzbekistan, Sh. Mirziyoyev, defined specific tasks, including:

"...it is necessary to form an electronic platform of scientific achievements, a base of local and foreign scientific developments. Every higher education and scientific research institution must establish cooperation with prestigious foreign universities and scientific centers."¹

In this regard, the experience of the Chinese state, which today is developing rapidly and innovatively on the international scale based on the achievements of science and technology, is particularly important.

The state's extensive implementation of innovation policies has become the main driving force of China's economic growth. From 1978 to the present day, the implementation of several reforms for the development of science and technology in China has led to the rapid development of the higher education system. Reforms carried out over three decades have created the basis for achieving an average GDP of 9 percent economic growth. In 2010, China's GDP surpassed Japan's, making it the world's second largest economy. By 2014, China's gross domestic product exceeded ten trillion dollars, and only the United States achieved this result in the world. But the 2008 financial crisis slowed the growth of China's manufacturing-based economy as it absorbed technology from developed countries. After the crisis, China developed its domestic innovation infrastructure in order to reduce its dependence on developed countries and began to carry out reforms to strengthen the competitiveness of domestic research institutes and universities. In 2017, China ranked 22nd in the world according to the "global innovation index" and ranked fourth in the "knowledge and technology performance index of the global innovation index".

¹Мирзиёев Ш.М. Ўзбекистон Республикаси Президенти Шавкат Мирзиёевнинг Олий Мажлисга Мурожаатномаси.//Халқ сўзи, 2020 йил 25 январь.

Western European Journal of Historical Events and Social Science

Volume 2, Issue 4, April, 2024

<https://westerneuropeanstudies.com/index.php/4>

ISSN (E): 2942-1926

Open Access| Peer Reviewed

 This article/work is licensed under CC Attribution-Non-Commercial 4.0

China's science and technology development policy has developed in four stages since the 1970s:

- experimental stage;
- systemic reforms;
- deep reforms;
- long-term planning.

Experimental phase (1978-1985). In the 1980s, China's economy and science and technology progress was still far behind the economy and science of developed countries.

In the 1960s, it became clear that the Soviet model of science and technology development did not combine research and production. Reforms began primarily with the privatization of some parts of research institutes. This reform facilitated the financing of research institutes and subsequently served to create important innovations in them. Most of China's current technology companies were founded during that period.

Systematic reforms (1985-1995). The "Systematic Reform in Science and Technology" law passed in 1985 led to "top-down" reforms in China. The primary purpose of this law was to strengthen the relationship between research institutes and related industries. At the same time, it was aimed to increase the economic impact of science and technology. As a result of the reforms based on this law, the Chinese Natural Science Foundation was established. This foundation began to finance applied research. In order to develop higher education, in 1993, the Chinese government developed and implemented the "211 Project" program. The government began to allocate special budget funds to support the leading universities of each region. During this time, the "100 Talents" program of the Chinese Academy of Sciences was formed, and the task of offering jobs in the field of education to qualified national personnel abroad and returning them to their homeland was set.

Phase of deep reforms (1996-2006). The five-year national budget plan and a number of other decisions initiated a phase of deep systemic reforms in the field of science and technology. China's main strategy has been to "rejuvenate the national economy through science and education." In 1996, the government passed a law on "inventions and innovations in science and technology". This new policy has three main objectives:

- moving innovation-creating power from research institutes to industrial sectors;
- to strengthen the innovative capacity of industrial sectors by investing in scientific developments;
- improving the commercialization of scientific innovations.

During this period, there were four important changes in the national innovation infrastructure. The "985 initiative" program, a continuation of the "211 project" program, was launched in order to create Chinese universities that meet global requirements. At the same time, the government has developed the "Knowledge Innovation Initiative" program in the Chinese Academy of Sciences to improve the quality of research in public institutions. In addition, the state developed the "Yangzi River Scholars Program" in order to further support scientific research, thereby creating an opportunity to increase the salary of teaching professors.

Long-term planning phase (2006-2020). In 2006, China's central government adopted the "medium and long-term national development plan" for 2006-2020. In the 2006 National Plan, guidelines for the development of science and technology, creation of independent innovations, rapid development of important technological areas, and establishment of basic infrastructure were noted. This plan focuses on achieving sustainable economic growth,

Western European Journal of Historical Events and Social Science

Volume 2, Issue 4, April, 2024

<https://westerneuropeanstudies.com/index.php/4>

ISSN (E): 2942-1926

Open Access| Peer Reviewed

 This article/work is licensed under CC Attribution-Non-Commercial 4.0

developing innovation development strategies, and increasing the capacity for innovative activity. During this period, the state paid great attention to the evaluation of the effectiveness of the current policy and the management of its implementation. There were many shortcomings in the implementation of previously developed laws and decisions, which required their systematization in a single understandable way. In 2011, the Chinese government launched the "Recruit 1,000 Talents" program to support talented young people.

In 2016, about 2,000 leading scientists in their fields returned to China through this program. In 2012, China set itself the goal of becoming the "most innovative nation" by 2020 and defined its strategy in this direction.

China's science and technology policy over the past three decades has led to unprecedented growth in innovation.

From 2002 to 2012, China's GDP almost quadrupled. Investments aimed at scientific and technical development of Chinese science and technology; innovation results - patents, products and scientific articles; we can see it in the cultivation of talents in science education and technological fields.

The development of science and technology in China has been carried out together with the education sector and the cultivation of skilled personnel. The reforms carried out in the field of education created the basis for a significant increase in the quality of education and a sharp increase in the number of students studying in universities. The increase in the number of talented students in universities has had a positive effect on the development of China's innovation system. At the same time, these reforms have also had an impact on the cultivation of talented young people. For example,

The "1000 talents" program has succeeded in bringing back talented Chinese scientists and researchers who have contributed to the creation of many innovations abroad.

In general, the Chinese experience is of great importance in the development of our republic on the basis of innovation.

Western European Journal of Historical Events and Social Science

Volume 2, Issue 4, April, 2024

<https://westerneuropeanstudies.com/index.php/4>

ISSN (E): 2942-1926

Open Access| Peer Reviewed

 This article/work is licensed under CC Attribution-Non-Commercial 4.0

REFERENCES:

1. Мирзиёев Ш.М. Ўзбекистон Республикаси Президенти Шавкат Мирзиёевнинг Олий Мажлисга Мурожаатномаси.//Халқ сўзи, 2020 йил 25 январь.
2. Ўзбекистон Республикаси Президентининг 2018 йил 27 апрелдаги “Инновацион ғоялар, технологиялар ва лойиҳаларни амалий жорий қилиш тизимини янада такомиллаштириш чора-тадбирлари тўғрисида”ги ПҚ-3682-сонли қарори.
3. Қ.Ж.Мирзаев, Э.Ш.Шавқиев, Б.К.Жанзаков. “Инновацион иқтисодиёт”: Ўқув қўлланма. – Т.: “Инновацион ривожланиш нашриёт-матбаа уйи”, 2020. 130-136 бетлар.
4. [Мирзаев Қ.Ж. Агросервис иқтисодиёти. Монография.-Т.: "IQTISOD-MOLIYA" нашриёти, 2013. - 212 Б. - 13,25 б.т.](#)
5. [Mirzaev K. The market livestock service of the Republic Uzbekistan // Spanish journal of rural development University of Santiago de Compostela. Volume II, - No2. Spain. 2011. - P. 97-106.](#)
6. [Mirzaev K. Approaches and issues for developing livestock services in Uzbekistan // International Cross-Industry Research Journal Perspectives of Innovations, Economics and Business. Volume 8, Issue 2, Praga. 2011.- P. 23-25.](#)